IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i7d10.1007_s11069-025-07108-3.html
   My bibliography  Save this article

Evidencing sources of flood disaster policy improvement leveraging flood risk attributes in India

Author

Listed:
  • Jagriti Jain

    (Indian Institute of Technology)

  • Francisco Muñoz-Arriola

    (University of Nebraska-Lincoln
    University of Nebraska-Lincoln)

  • Deepak Khare

    (Indian Institute of Technology)

Abstract

Climate change has contributed to shifting extreme events' frequency, intensity, spatial extent, duration, and timing, affecting communities and regions worldwide. Yet, disaster governance grapples with addressing the effects of emerging and unexpected spatiotemporal patterns of hydroclimatic variability on the built and natural systems. This study aims to create a workflow to identify sources of flood disaster governance improvement using flood risk attributes for three major flood events at state and district levels in India. The flood risk-based framework quantifies vulnerability, exposure, and hazard to evidence the potential critical drivers of flood disaster improvement in the affected areas. Three major flooding events occurred between 2005 and 2020 in India's Maharashtra, Uttarakhand, and Assam states are characterized by their hazard, vulnerability, and exposure risk attributes. A comprehensive compilation of precipitation anomalies, augmented by media data and hazard mapping flow accumulation (F), rainfall intensity (I), geology (G), land use (U), slope (S), elevation (E) and distance from the drainage network (D) and global sensitivity analysis (FIGUSED-GSA), presiding over the estimation of flood exposure (using runoff Peak-over-threshold return periods), socio-economic vulnerabilities (using the equal weightage method), and risk (as a product of hazard, exposure and vulnerability). These methods will be useful for the data scarce regions as well. The estimates of flood risk and its components will aid in highlighting the areas of possible actions needed to create more effective flood governance frameworks at both the state and district level.

Suggested Citation

  • Jagriti Jain & Francisco Muñoz-Arriola & Deepak Khare, 2025. "Evidencing sources of flood disaster policy improvement leveraging flood risk attributes in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(7), pages 8011-8038, April.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-025-07108-3
    DOI: 10.1007/s11069-025-07108-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07108-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07108-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kristian Krieger, 2013. "The limits and variety of risk‐based governance: The case of flood management in Germany and England," Regulation & Governance, John Wiley & Sons, vol. 7(2), pages 236-257, June.
    2. H. Moel & J. Aerts, 2011. "Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 407-425, July.
    3. Dariusz B. Baranowski & Maria K. Flatau & Piotr J. Flatau & Dwikorita Karnawati & Katarzyna Barabasz & Michal Labuz & Beata Latos & Jerome M. Schmidt & Jaka A. I. Paski & Marzuki, 2020. "Social-media and newspaper reports reveal large-scale meteorological drivers of floods on Sumatra," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. P. Zhou & B. Ang & D. Zhou, 2010. "Weighting and Aggregation in Composite Indicator Construction: a Multiplicative Optimization Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 96(1), pages 169-181, March.
    5. Paul Bates, 2023. "Uneven burden of urban flooding," Nature Sustainability, Nature, vol. 6(1), pages 9-10, January.
    6. Oliver E. J. Wing & William Lehman & Paul D. Bates & Christopher C. Sampson & Niall Quinn & Andrew M. Smith & Jeffrey C. Neal & Jeremy R. Porter & Carolyn Kousky, 2022. "Inequitable patterns of US flood risk in the Anthropocene," Nature Climate Change, Nature, vol. 12(2), pages 156-162, February.
    7. Margot Hurlbert & Joyeeta Gupta, 2016. "Adaptive Governance, Uncertainty, and Risk: Policy Framing and Responses to Climate Change, Drought, and Flood," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 339-356, February.
    8. S. Balica & N. Wright & F. Meulen, 2012. "A flood vulnerability index for coastal cities and its use in assessing climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 73-105, October.
    9. Zongzhi Wang & Jingjing Wu & Liang Cheng & Kelin Liu & Yi-Ming Wei, 2018. "Regional flood risk assessment via coupled fuzzy c-means clustering methods: an empirical analysis from China’s Huaihe River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 803-822, September.
    10. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    11. repec:bla:devpol:v:25:y:2007:i:2:p:243-264 is not listed on IDEAS
    12. Valentina Ferretti & Gilberto Montibeller, 2019. "An Integrated Framework for Environmental Multi‐Impact Spatial Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 257-273, January.
    13. Fatemeh Jalayer & Raffaele Risi & Francesco Paola & Maurizio Giugni & Gaetano Manfredi & Paolo Gasparini & Maria Topa & Nebyou Yonas & Kumelachew Yeshitela & Alemu Nebebe & Gina Cavan & Sarah Lindley , 2014. "Probabilistic GIS-based method for delineation of urban flooding risk hotspots," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 975-1001, September.
    14. Dries Hegger & Peter Driessen & Carel Dieperink & Mark Wiering & G. Raadgever & Helena Rijswick, 2014. "Assessing Stability and Dynamics in Flood Risk Governance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4127-4142, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vitor Baccarin Zanetti & Wilson Cabral De Sousa Junior & Débora M. De Freitas, 2016. "A Climate Change Vulnerability Index and Case Study in a Brazilian Coastal City," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    2. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    3. Subhankar Chakraborty & Sutapa Mukhopadhyay, 2019. "Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 247-274, October.
    4. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    5. Aishwarya Narendr & S. Vinay & Bharath Haridas Aithal & Sutapa Das, 2022. "Multi-dimensional parametric coastal flood risk assessment at a regional scale using GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9569-9597, July.
    6. Muhammad Tauhidur Rahman & Adel S. Aldosary & Kh Md Nahiduzzaman & Imran Reza, 2016. "Vulnerability of flash flooding in Riyadh, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1807-1830, December.
    7. Gargiulo, Carmela & Battarra, Rosaria & Tremiterra, Maria Rosa, 2020. "Coastal areas and climate change: A decision support tool for implementing adaptation measures," Land Use Policy, Elsevier, vol. 91(C).
    8. Yu Duan & Junnan Xiong & Weiming Cheng & Nan Wang & Yi Li & Yufeng He & Jun Liu & Wen He & Gang Yang, 2022. "Flood vulnerability assessment using the triangular fuzzy number-based analytic hierarchy process and support vector machine model for the Belt and Road region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 269-294, January.
    9. Cibele Oliveira Lima & Jarbas Bonetti & Tiago Borges Ribeiro Gandra & Carla Bonetti & Marinez Eymael Garcia Scherer, 2024. "Multiscale analysis of coastal social vulnerability to extreme events in Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(2), pages 1163-1184, January.
    10. Sarah Percival & Richard Teeuw, 2019. "A methodology for urban micro-scale coastal flood vulnerability and risk assessment and mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 355-377, May.
    11. Alexandre Oliveira Tavares & José Leandro Barros & Angela Santos, 2017. "Multidimensional Approach for Tsunami Vulnerability Assessment: Framing the Territorial Impacts in Two Municipalities in Portugal," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 788-811, April.
    12. Jejal Reddy Bathi & Himangshu S. Das, 2016. "Vulnerability of Coastal Communities from Storm Surge and Flood Disasters," IJERPH, MDPI, vol. 13(2), pages 1-12, February.
    13. Irfan Ahmad Rana & Jayant K. Routray, 2018. "Integrated methodology for flood risk assessment and application in urban communities of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 239-266, March.
    14. Komali Kantamaneni, 2016. "Coastal infrastructure vulnerability: an integrated assessment model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 139-154, October.
    15. Daniel Felsenstein & Michal Lichter, 2014. "Social and economic vulnerability of coastal communities to sea-level rise and extreme flooding," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 463-491, March.
    16. Sindhuja Kasthala & D. Parthasarathy & K. Narayanan & Arun B. Inamdar, 2024. "Classification and Evaluation of Current Climate Vulnerability Assessment Methods," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 171(2), pages 605-639, January.
    17. Kerstin Krellenberg & Juliane Welz, 2017. "Assessing Urban Vulnerability in the Context of Flood and Heat Hazard: Pathways and Challenges for Indicator-Based Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 132(2), pages 709-731, June.
    18. Santosh Pathak & Hua Wang & Katherine Seals & Naveen C Adusumilli & Denise Holston, 2023. "Self-assessed health status and obesity vulnerability in rural Louisiana: A cross-sectional analysis," PLOS ONE, Public Library of Science, vol. 18(6), pages 1-16, June.
    19. Stephanie Chang & Jackie Yip & Shona Zijll de Jong & Rebecca Chaster & Ashley Lowcock, 2015. "Using vulnerability indicators to develop resilience networks: a similarity approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1827-1841, September.
    20. Niranjan Padhan & S Madheswaran, 2023. "An integrated assessment of vulnerability to floods in coastal Odisha: a district-level analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2351-2382, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-025-07108-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.