IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i2d10.1007_s11069-024-06831-7.html
   My bibliography  Save this article

Seismic variations before Eastern Anatolian catastrophic events in February 2023

Author

Listed:
  • Petya Trifonova

    (National Institute of Geophysics, Geodesy and Geography - Bulgarian Academy of Sciences (NIGGG-BAS))

  • Emil Oynakov

    (National Institute of Geophysics, Geodesy and Geography - Bulgarian Academy of Sciences (NIGGG-BAS))

  • Mariya Popova

    (National Institute of Geophysics, Geodesy and Geography - Bulgarian Academy of Sciences (NIGGG-BAS))

  • Irena Aleksandrova

    (National Institute of Geophysics, Geodesy and Geography - Bulgarian Academy of Sciences (NIGGG-BAS))

Abstract

The East Anatolian Fault System has been intensively studied over the years due to its potential to generate strong earthquakes and the high exposure of the economy and population in the region. This interest intensified even more after the strong earthquakes in the area at the beginning of February 2023, leading to a focused search for features and precursors that might suggest such an upcoming event. We analyze certain characteristics of seismicity within the East Anatolian Fault System before the earthquakes of February 6, 2023, with magnitudes Mw = 7.8 and Mw = 7.5, over the time period between 1983 and 2022. The earthquake catalog from January 1983 to September 2023, created by Turkish Bogazici University KOERI, is used. Processing of the data is performed by the ZMAP 7.1 software used in the MATLAB environment. Events with a magnitude greater than 2.5 are considered in four time periods: 1983–1992, 1993–2002, 2003–2012, and 2013–2022, totaling 29,346 events. The b-value of the magnitude-frequency distribution of earthquakes (slope of the recurrence graph) is determined; the parameter β, indicative of the increase or decrease in the rate of anomalous seismicity, and parameter Z, associated with anomalous seismic quiescence, is evaluated. A significant decrease in the value of b (from 1.07 to 0.84) is observed when comparing the two periods (2013–2017/2018–2022), indicating accumulated stress in the Earth’s crust. Furthermore, the Z parameter analysis for the period July 2021 to December 2022 shows evidence of relative seismic quiet in the examined area compared to the period from January 2020 to the end of June 2021. Those results suggest that the spatiotemporal variations of the studied seismic parameters could serve as predictors of the two very strong seismic events in the southern part of the Eastern Anatolian region of Turkey.

Suggested Citation

  • Petya Trifonova & Emil Oynakov & Mariya Popova & Irena Aleksandrova, 2025. "Seismic variations before Eastern Anatolian catastrophic events in February 2023," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 1289-1301, January.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:2:d:10.1007_s11069-024-06831-7
    DOI: 10.1007/s11069-024-06831-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06831-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06831-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Gomberg & P. A. Reasenberg & P. Bodin & R. A. Harris, 2001. "Earthquake triggering by seismic waves following the Landers and Hector Mine earthquakes," Nature, Nature, vol. 411(6836), pages 462-466, May.
    2. Deborah Kilb & Joan Gomberg & Paul Bodin, 2000. "Triggering of earthquake aftershocks by dynamic stresses," Nature, Nature, vol. 408(6812), pages 570-574, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Tiwari & Ashutosh Chamoli, 2015. "Is tidal forcing critical to trigger large Sumatra earthquakes?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 65-74, May.
    2. G. Surve & G. Mohan, 2012. "Possible evidence of remotely triggered and delayed seismicity due to the 2001 Bhuj earthquake (Mw = 7.6) in western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 299-310, October.
    3. Zhou, Yu & Leung, Yee & Chan, Lung Sang, 2017. "Oscillatory tendency of interevent direction in earthquake sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 120-130.
    4. Mayank Dixit & Abhey Ram Bansal & M. Ravi Kumar & Rajat Pasricha, 2025. "Dynamically triggered events in mining- and monsoon-induced regions of Northwestern Deccan volcanic province of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(1), pages 269-290, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:2:d:10.1007_s11069-024-06831-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.