IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i8d10.1007_s11069-024-06557-6.html
   My bibliography  Save this article

Influence of bed roughness parameter in storm surge modeling along the east coast of India

Author

Listed:
  • N. Saichenthur

    (Indian Institute of Technology Madras)

  • K. Chitra

    (People for Water and Climate (PWC))

  • E. Sree Nandhini

    (Indian Institute of Technology Madras)

  • K. Murali

    (Indian Institute of Technology Madras)

Abstract

The east coast of India is highly prone to devastating winds, torrential rainfall, and storm surges caused by tropical cyclones. The storm surge is affected by ocean basin characteristics involving the width and slope of the continental shelf. The bed roughness plays a major role in surge formation. The east coast of India is characterized by a broader shelf in the north and a narrow shelf in the south. This paper uses a hybrid Finite Volume Method–Finite Element Method based Shallow water equation (SWE) solver to predict the storm surges during different cyclone events, and the roughness parameter Manning’s n is used in bed friction calculations. The bottom friction coefficient parameterization involving bed roughness is used to calibrate the resistance to flow in the numerical model. The calibration exercises are carried out with different values of n for each surge simulations for different cyclones to predict the surface elevation. Different statistical parameters against the measured values are used to analyze the impact of varying n values on predicted surge levels, and the most suitable n value is carefully chosen. The relationship between n and the bed slope is established as an expression, to replace the formulations involving Manning’s n, thereby minimizing the usual computational efforts. The performance of the novel bed friction formulation involving the physical parameter in bed slope is demonstrated through statistical evaluations.

Suggested Citation

  • N. Saichenthur & K. Chitra & E. Sree Nandhini & K. Murali, 2024. "Influence of bed roughness parameter in storm surge modeling along the east coast of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(8), pages 7969-7995, June.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:8:d:10.1007_s11069-024-06557-6
    DOI: 10.1007/s11069-024-06557-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06557-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06557-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prakash Sinha & Indu Jain & Neetu Bhardwaj & Ambarukhana Rao & Shishir Dube, 2008. "Numerical modeling of tide-surge interaction along Orissa coast of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(3), pages 413-427, June.
    2. S. Dube & Indu Jain & A. Rao & T. Murty, 2009. "Storm surge modelling for the Bay of Bengal and Arabian Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 3-27, October.
    3. Laura Río-Martín & Saray Busto & Michael Dumbser, 2021. "A Massively Parallel Hybrid Finite Volume/Finite Element Scheme for Computational Fluid Dynamics," Mathematics, MDPI, vol. 9(18), pages 1-41, September.
    4. S. Dube & P. Chittibabu & P. Sinha & A. Rao & T. Murty, 2004. "Numerical Modelling of Storm Surge in the Head Bay of Bengal Using Location Specific Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(2), pages 437-453, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Sindhu & A. Unnikrishnan, 2012. "Return period estimates of extreme sea level along the east coast of India from numerical simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1007-1028, April.
    2. A. D. Rao & Puja Upadhaya & Smita Pandey & Jismy Poulose, 2020. "Simulation of extreme water levels in response to tropical cyclones along the Indian coast: a climate change perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 151-172, January.
    3. Michela Biasutti & Adam Sobel & Suzana Camargo & Timothy Creyts, 2012. "Projected changes in the physical climate of the Gulf Coast and Caribbean," Climatic Change, Springer, vol. 112(3), pages 819-845, June.
    4. Usha Natesan & P. Rajalakshmi & M. Ramana Murthy & Vincent Ferrer, 2013. "Estimation of wave heights during cyclonic conditions using wave propagation model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1751-1766, December.
    5. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    6. Gour Paul & Ahmad Ismail, 2013. "Contribution of offshore islands in the prediction of water levels due to tide–surge interaction for the coastal region of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 13-25, January.
    7. Shitangsu Paul & Jayant Routray, 2011. "Household response to cyclone and induced surge in coastal Bangladesh: coping strategies and explanatory variables," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 477-499, May.
    8. Fei Liu & Jun Sasaki & Jundong Chen & Yulong Wang, 2022. "Numerical assessment of coastal multihazard vulnerability in Tokyo Bay," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3597-3625, December.
    9. Antony Joseph & R. Prabhudesai & Prakash Mehra & V. Sanil Kumar & K. Radhakrishnan & Vijay Kumar & K. Ashok Kumar & Yogesh Agarwadekar & U. Bhat & Ryan Luis & Pradhan Rivankar & Blossom Viegas, 2011. "Response of west Indian coastal regions and Kavaratti lagoon to the November-2009 tropical cyclone Phyan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 293-312, May.
    10. Xue Jin & Xiaoxia Shi & Jintian Gao & Tongbin Xu & Kedong Yin, 2018. "Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups," IJERPH, MDPI, vol. 15(4), pages 1-19, March.
    11. Tanveerul Islam & Richard Peterson, 2009. "Climatology of landfalling tropical cyclones in Bangladesh 1877–2003," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(1), pages 115-135, January.
    12. K. K. Basheer Ahammed & Arvind Chandra Pandey & Bikash Ranjan Parida & Wasim & Chandra Shekhar Dwivedi, 2023. "Impact Assessment of Tropical Cyclones Amphan and Nisarga in 2020 in the Northern Indian Ocean," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    13. Boscheri, Walter & Tavelli, Maurizio, 2022. "High order semi-implicit schemes for viscous compressible flows in 3D," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    14. Edward Helderop & Tony H. Grubesic, 2022. "Hurricane storm surge: toward a normalized damage index for coastal regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1179-1197, January.
    15. Raghu Nadimpalli & Krishna K. Osuri & Sujata Pattanayak & U. C. Mohanty & M. M. Nageswararao & S. Kiran Prasad, 2016. "Real-time prediction of movement, intensity and storm surge of very severe cyclonic storm Hudhud over Bay of Bengal using high-resolution dynamical model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1771-1795, April.
    16. Edris Alam & Dale Dominey-Howes, 2016. "A catalogue of earthquakes between 810BC and 2012 for the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 2031-2102, April.
    17. Pavel Tkalich & P. Vethamony & M. Babu & Paola Malanotte-Rizzoli, 2013. "Storm surges in the Singapore Strait due to winds in the South China Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1345-1362, April.
    18. Hasan, Mohammad Monirul, 2014. "Climate change induced marginality: Households’ vulnerability in the meal consumption frequencies," MPRA Paper 88047, University Library of Munich, Germany.
    19. Md Aboul Fazal Younus, 2017. "An assessment of vulnerability and adaptation to cyclones through impact assessment guidelines: a bottom-up case study from Bangladesh coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1437-1459, December.
    20. A. Rao & Sujata Dash & Indu Jain & S. Dube, 2007. "Effect of estuarine flow on ocean circulation using a coupled coastal-bay estuarine model: an application to the 1999 Orissa cyclone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(3), pages 549-562, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:8:d:10.1007_s11069-024-06557-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.