IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v81y2016i3d10.1007_s11069-016-2155-x.html
   My bibliography  Save this article

Real-time prediction of movement, intensity and storm surge of very severe cyclonic storm Hudhud over Bay of Bengal using high-resolution dynamical model

Author

Listed:
  • Raghu Nadimpalli

    (Indian Institute of Technology)

  • Krishna K. Osuri

    (NIT Rourkela)

  • Sujata Pattanayak

    (Indian Institute of Technology)

  • U. C. Mohanty

    (Indian Institute of Technology)

  • M. M. Nageswararao

    (Indian Institute of Technology)

  • S. Kiran Prasad

    (Indian Institute of Technology)

Abstract

Tropical cyclone (TC) ‘Hudhud’ (October 2014) over the Bay of Bengal was the first TC to strike the Port city, Vishakhapatnam, with intensity of 100 knots (180 km h−1) since 1891. The advanced research weather research and forecasting (ARW) model with 9-km grid spacing is coupled offline with dynamical storm surge model and is used for real-time prediction of Hudhud. In the current study, the successful story of prediction of Hudhud is substantiated. The ARW model was able to predict the genesis in advance of 3 days with reasonable accuracy in position and strength. The mean initial vortex position and intensity errors are 46 km and 6 knots, respectively. The model predictions showed that Hudhud would intensify to a very severe cyclonic storm (max. sustained wind speed ~97 knots from all the experiments) in advance of ~4 days which is consistent with the observation. The mean absolute intensity forecast error is significantly less (18 knots) up to 96-h forecast. The model could reproduce the upper-level warming of ~7.5 °C at ~50 km radial distance similar to that of satellite observation. The ARW model showed appreciable performance in track prediction (with errors ≤150 km up to 96-h forecast). On the landfall day, the rainfall patterns are realistic and consistent with IMD rainfall observation. The dynamical storm surge model, forced with the outputs of the ARW model, was able to predict realistic surge ranging between 1.4–2.2 m in 24- to 96-h forecast lengths. This study highlights the importance and need of high-resolution numerical models for operational TC and associated surge forecast over the region.

Suggested Citation

  • Raghu Nadimpalli & Krishna K. Osuri & Sujata Pattanayak & U. C. Mohanty & M. M. Nageswararao & S. Kiran Prasad, 2016. "Real-time prediction of movement, intensity and storm surge of very severe cyclonic storm Hudhud over Bay of Bengal using high-resolution dynamical model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1771-1795, April.
  • Handle: RePEc:spr:nathaz:v:81:y:2016:i:3:d:10.1007_s11069-016-2155-x
    DOI: 10.1007/s11069-016-2155-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2155-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2155-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Dube & Indu Jain & A. Rao & T. Murty, 2009. "Storm surge modelling for the Bay of Bengal and Arabian Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 3-27, October.
    2. Monica Laureano Bozeman & Dev Niyogi & S. Gopalakrishnan & Frank Marks & Xuejin Zhang & Vijay Tallapragada, 2012. "An HWRF-based ensemble assessment of the land surface feedback on the post-landfall intensification of Tropical Storm Fay (2008)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1543-1571, September.
    3. A. Rao & P. Murty & Indu Jain & R. Kankara & S. Dube & T. Murty, 2013. "Simulation of water levels and extent of coastal inundation due to a cyclonic storm along the east coast of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1431-1441, April.
    4. Ki-Young Heo & Jeong-Wook Lee & Kyung-Ja Ha & Ki-Cheon Jun & Kwang-Soon Park & Jae-Il Kwon, 2009. "Simulation of atmospheric states for a storm surge on the west coast of Korea: model comparison between MM5, WRF and COAMPS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 151-162, October.
    5. U. Mohanty & Dev Niyogi & K. Potty, 2012. "Recent developments in tropical cyclone analysis using observations and high resolution models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1281-1283, September.
    6. M. Mohapatra & G. Mandal & B. Bandyopadhyay & Ajit Tyagi & U. Mohanty, 2012. "Classification of cyclone hazard prone districts of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1601-1620, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Praveen Kumar Pothapakula & Krishna K. Osuri & Sujata Pattanayak & U. C. Mohanty & Sourav Sil & Raghu Nadimpalli, 2017. "Observational perspective of SST changes during life cycle of tropical cyclones over Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1769-1787, September.
    2. Madhusmita Swain & S. Pattanayak & U. C. Mohanty & S. C. Sahu, 2020. "Prediction of extreme rainfall associated with monsoon depressions over Odisha: an assessment of coastal zone vulnerability at district level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(2), pages 607-632, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. D. Rao & Puja Upadhaya & Smita Pandey & Jismy Poulose, 2020. "Simulation of extreme water levels in response to tropical cyclones along the Indian coast: a climate change perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 151-172, January.
    2. Yashvant Das, 2018. "Parametric modeling of tropical cyclone wind fields in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 1049-1084, September.
    3. A. D. Rao & Puja Upadhaya & Hyder Ali & Smita Pandey & Vidya Warrier, 2020. "Coastal inundation due to tropical cyclones along the east coast of India: an influence of climate change impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(1), pages 39-57, March.
    4. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    5. Pritam Ghosh & Asraful Alam & Nilanjana Ghosal & Debodatta Saha, 2021. "A Geospatial Analysis of Temporary Housing Inequality among Socially Marginalized and Privileged Groups in India," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 798-819, June.
    6. Sachiko Mohanty & A. D. Rao & Himansu Pradhan, 2017. "Effect of seasonal and cyclonic winds on internal tides over the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1109-1124, June.
    7. Xue Jin & Xiaoxia Shi & Jintian Gao & Tongbin Xu & Kedong Yin, 2018. "Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups," IJERPH, MDPI, vol. 15(4), pages 1-19, March.
    8. K. K. Basheer Ahammed & Arvind Chandra Pandey & Bikash Ranjan Parida & Wasim & Chandra Shekhar Dwivedi, 2023. "Impact Assessment of Tropical Cyclones Amphan and Nisarga in 2020 in the Northern Indian Ocean," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    9. Edward Helderop & Tony H. Grubesic, 2022. "Hurricane storm surge: toward a normalized damage index for coastal regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1179-1197, January.
    10. Edris Alam & Dale Dominey-Howes, 2016. "A catalogue of earthquakes between 810BC and 2012 for the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 2031-2102, April.
    11. Chi-Hsiang Wang & Yong Khoo & Xiaoming Wang, 2015. "Adaptation benefits and costs of raising coastal buildings under storm-tide inundation in South East Queensland, Australia," Climatic Change, Springer, vol. 132(4), pages 545-558, October.
    12. Pavel Tkalich & P. Vethamony & M. Babu & Paola Malanotte-Rizzoli, 2013. "Storm surges in the Singapore Strait due to winds in the South China Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1345-1362, April.
    13. Saudamini Das, 2019. "Evaluating climate change adaptation through evacuation decisions: a case study of cyclone management in India," Climatic Change, Springer, vol. 152(2), pages 291-305, January.
    14. Unmesh Patnaik & Prasun Kumar Das & Chandra Sekhar Bahinipati, 2016. "Coping with Climatic Shocks: Empirical Evidence from Rural Coastal Odisha, India," Global Business Review, International Management Institute, vol. 17(1), pages 161-175, February.
    15. Michela Biasutti & Adam Sobel & Suzana Camargo & Timothy Creyts, 2012. "Projected changes in the physical climate of the Gulf Coast and Caribbean," Climatic Change, Springer, vol. 112(3), pages 819-845, June.
    16. Md Aboul Fazal Younus, 2017. "An assessment of vulnerability and adaptation to cyclones through impact assessment guidelines: a bottom-up case study from Bangladesh coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1437-1459, December.
    17. B. Sindhu & A. Unnikrishnan, 2012. "Return period estimates of extreme sea level along the east coast of India from numerical simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1007-1028, April.
    18. Usha Natesan & P. Rajalakshmi & M. Ramana Murthy & Vincent Ferrer, 2013. "Estimation of wave heights during cyclonic conditions using wave propagation model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1751-1766, December.
    19. S. Niggol Seo, 2017. "Measuring Policy Benefits Of The Cyclone Shelter Program In The North Indian Ocean: Protection From Intense Winds Or High Storm Surges?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-18, November.
    20. Indrajit Ghosh & Sukhen Das & Nabajit Chakravarty, 2022. "Anomaly temperature in the genesis of tropical cyclone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1477-1503, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:81:y:2016:i:3:d:10.1007_s11069-016-2155-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.