A data-driven approach for regional-scale fine-resolution disaster impact prediction under tropical cyclones
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-024-06527-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yen-Ming Chiang & Wei-Guo Cheng & Fi-John Chang, 2012. "A hybrid artificial neural network-based agri-economic model for predicting typhoon-induced losses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 769-787, September.
- Jie Dou & Hiromitsu Yamagishi & Hamid Pourghasemi & Ali Yunus & Xuan Song & Yueren Xu & Zhongfan Zhu, 2015. "An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1749-1776, September.
- Sangki Park & John Lindt & Yue Li, 2013. "Application of the hybrid ABV procedure for assessing community risk to hurricanes spatially," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 981-1000, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
- Siti Norsakinah Selamat & Nuriah Abd Majid & Mohd Raihan Taha & Ashraf Osman, 2022. "Landslide Susceptibility Model Using Artificial Neural Network (ANN) Approach in Langat River Basin, Selangor, Malaysia," Land, MDPI, vol. 11(6), pages 1-21, June.
- Xianyu Yu & Tingting Xiong & Weiwei Jiang & Jianguo Zhou, 2023. "Comparative Assessment of the Efficacy of the Five Kinds of Models in Landslide Susceptibility Map for Factor Screening: A Case Study at Zigui-Badong in the Three Gorges Reservoir Area, China," Sustainability, MDPI, vol. 15(1), pages 1-26, January.
- Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
- Fang Zou & Qingming Zhan & Weisi Zhang, 2018. "Quantifying the impact of human activities on geological hazards in mountainous areas: evidence from Shennongjia, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 137-155, January.
- Jonmenjoy Barman & Brototi Biswas & K. Srinivasa Rao, 2024. "A hybrid integration of analytical hierarchy process (AHP) and the multiobjective optimization on the basis of ratio analysis (MOORA) for landslide susceptibility zonation of Aizawl, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8571-8596, July.
- Dino Collalti & Eric Strobl, 2022. "Economic damages due to extreme precipitation during tropical storms: evidence from Jamaica," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2059-2086, February.
- Lanqian Feng & Mingming Guo & Wenlong Wang & Yulan Chen & Qianhua Shi & Wenzhao Guo & Yibao Lou & Hongliang Kang & Zhouxin Chen & Yanan Zhu, 2022. "Comparative Analysis of Machine Learning Methods and a Physical Model for Shallow Landslide Risk Modeling," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
- Nanda Khoirunisa & Cheng-Yu Ku & Chih-Yu Liu, 2021. "A GIS-Based Artificial Neural Network Model for Flood Susceptibility Assessment," IJERPH, MDPI, vol. 18(3), pages 1-20, January.
- Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.
- Rongwei Li & Shucheng Tan & Mingfei Zhang & Shaohan Zhang & Haishan Wang & Lei Zhu, 2024. "Geological Disaster Susceptibility Evaluation Using a Random Forest Empowerment Information Quantity Model," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
- Quang-Khanh Nguyen & Dieu Tien Bui & Nhat-Duc Hoang & Phan Trong Trinh & Viet-Ha Nguyen & Isık Yilmaz, 2017. "A Novel Hybrid Approach Based on Instance Based Learning Classifier and Rotation Forest Ensemble for Spatial Prediction of Rainfall-Induced Shallow Landslides using GIS," Sustainability, MDPI, vol. 9(5), pages 1-24, May.
- Siti Norsakinah Selamat & Nuriah Abd Majid & Mohd Raihan Taha, 2025. "Multicollinearity and spatial correlation analysis of landslide conditioning factors in Langat River Basin, Selangor," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(3), pages 2665-2684, February.
- Wamba Danny Love Djukem & Anika Braun & Armand Sylvain Ludovic Wouatong & Christian Guedjeo & Katrin Dohmen & Pierre Wotchoko & Tomas Manuel Fernandez-Steeger & Hans-Balder Havenith, 2020. "Effect of Soil Geomechanical Properties and Geo-Environmental Factors on Landslide Predisposition at Mount Oku, Cameroon," IJERPH, MDPI, vol. 17(18), pages 1-27, September.
- Irjesh Sonker & Jayant Nath Tripathi & Swarnim, 2024. "Landslide susceptibility mapping using morphological and hydrological parameters in Sikkim Himalaya: frequency ratio model and geospatial technologies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6797-6832, May.
- Jamal Mosaffaie & Amin Salehpour Jam & Faramarz Sarfaraz, 2024. "Landslide risk assessment based on susceptibility and vulnerability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(4), pages 9285-9303, April.
- Ann-Kathrin Edrich & Anil Yildiz & Ribana Roscher & Alexander Bast & Frank Graf & Julia Kowalski, 2024. "A modular framework for FAIR shallow landslide susceptibility mapping based on machine learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8953-8982, July.
More about this item
Keywords
Tropical cyclone; Convolutional neural network (CNN); Encoder-decoder architecture; Fine-resolution prediction; Regional impact; Resilience;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:8:d:10.1007_s11069-024-06527-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.