IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i5d10.1007_s11069-024-06409-3.html
   My bibliography  Save this article

The Nature-Based Solutions and climate change scenarios toward flood risk management in the greater Athens area—Greece

Author

Listed:
  • Aimilia-Panagiota Theochari

    (National Technical University of Athens)

  • Evangelos Baltas

    (National Technical University of Athens)

Abstract

This research paper focuses on implementing two Nature-Based Solutions (NBS) in the Sarantapotamos river basin upstream of Magoula settlement, evaluating their effectiveness through flood hydrograph calculations before and after NBS, and under future climate scenarios, encompassing lower, mean, and upper conditions representing ± 95%. The study area covers an area of 226 km2 in Attica, Greece, susceptible to extreme flood events. The research contributes to NBS knowledge, emphasizing flood resilience and protecting settlements downstream. Land cover change and retention ponds, applied individually and combined, serve as NBS approaches. Flood hydrographs are calculated using the time–area (TA) diagram method in a geographic information system (GIS) with the Hydrological Engineering Center’s Hydrological Modeling System (HEC-HMS). Results demonstrate NBS effectiveness in current climate conditions, reducing peak discharge by 9.3% and 28% for land cover change and retention ponds, respectively. The combined NBS achieves a 40.5% peak discharge reduction and a significant 15.7% total flood volume decrease. Under climate change scenarios, impacts on design precipitation and flood hydrographs vary. The upper climate change scenario exhibits a 3348% increase in peak discharge and a 600% rise in total flood volume, while the lower scenario sees a 44.6% reduction in total flood volume. In the mean climate change scenario, land cover change and retention ponds reduce peak discharge by 9.73% and 23.11% and total flood volume by 9.25% and 2.17%, respectively. In conclusion, retention ponds show substantial peak discharge reduction, while land cover changes extend the time to peak, emphasizing their potential in flood risk management.

Suggested Citation

  • Aimilia-Panagiota Theochari & Evangelos Baltas, 2024. "The Nature-Based Solutions and climate change scenarios toward flood risk management in the greater Athens area—Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(5), pages 4729-4747, March.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:5:d:10.1007_s11069-024-06409-3
    DOI: 10.1007/s11069-024-06409-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06409-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06409-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hariklia D. Skilodimou & George D. Bathrellos & Dimitrios E. Alexakis, 2021. "Flood Hazard Assessment Mapping in Burned and Urban Areas," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    2. Anoop Kumar Mishra & Vanganuru Nagaraju, 2021. "Remote sensing of extreme flash floods over two southern states of India during North-East monsoon season of 2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 2015-2020, June.
    3. Ahmed Youssef & Biswajeet Pradhan & Saleh Sefry, 2015. "Remote sensing-based studies coupled with field data reveal urgent solutions to avert the risk of flash floods in the Wadi Qus (east of Jeddah) Kingdom of Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1465-1488, January.
    4. Muluneh Legesse Edamo & Samuel Dagalo Hatiye & Thomas T. Minda & Tigistu Yisihak Ukumo, 2023. "Flood inundation and risk mapping under climate change scenarios in the lower Bilate catchment, Ethiopia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2199-2226, September.
    5. Ioannis M. Kourtis & Ioannis Nalbantis & George Tsakiris & Basil Ε. Psiloglou & Vassilios A. Tsihrintzis, 2023. "Updating IDF Curves Under Climate Change: Impact on Rainfall-Induced Runoff in Urban Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2403-2428, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maelaynayn El Baida & Mimoun Chourak & Farid Boushaba, 2025. "Flood Mitigation and Water Resource Preservation: Hydrodynamic and SWMM Simulations of nature-based Solutions under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(3), pages 1149-1176, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hariklia D. Skilodimou & George D. Bathrellos, 2021. "Natural and Technological Hazards in Urban Areas: Assessment, Planning and Solutions," Sustainability, MDPI, vol. 13(15), pages 1-5, July.
    2. Bikram Manandhar & Shenghui Cui & Lihong Wang & Sabita Shrestha, 2023. "Urban Flood Hazard Assessment and Management Practices in South Asia: A Review," Land, MDPI, vol. 12(3), pages 1-29, March.
    3. Dimitrios E. Alexakis & George D. Bathrellos & Hariklia D. Skilodimou & Dimitra E. Gamvroula, 2021. "Spatial Distribution and Evaluation of Arsenic and Zinc Content in the Soil of a Karst Landscape," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    4. Efthimios Karymbalis & Maria Andreou & Dimitrios-Vasileios Batzakis & Konstantinos Tsanakas & Sotirios Karalis, 2021. "Integration of GIS-Based Multicriteria Decision Analysis and Analytic Hierarchy Process for Flood-Hazard Assessment in the Megalo Rema River Catchment (East Attica, Greece)," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    5. Ziaul Haq Doost & Shakhawat Chowdhury & Ahmed M. Al‑Areeq & Ibrahim Tabash & Guled Hassan & Habibullah Rahnaward & Abdul Raqib Qaderi, 2024. "Development of intensity–duration–frequency curves for Herat, Afghanistan: enhancing flood risk management and implications for infrastructure and safety," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 12933-12965, November.
    6. Anirban Roy & Srabendu Bikash Dhar, 2024. "Assessment of flood vulnerability and identification of flood footprint in Keleghai River basin in India: a geo-spatial approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(5), pages 4853-4874, March.
    7. Safaa Ahmed & Mike Jesson & Soroosh Sharifi, 2025. "A Novel, Ecology-Inclusive, Hybrid Framework for Rainwater Harvesting Site Selection in Arid and Semi-Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(5), pages 2419-2439, March.
    8. Vasileios Mazarakis & Konstantinos Tsanakas & Noam Greenbaum & Dimitrios-Vasileios Batzakis & Alessia Sorrentino & Ioannis Tsodoulos & Kanella Valkanou & Efthimios Karymbalis, 2025. "Flood-Hazard Assessment in the Messapios River Catchment (Central Evia Island, Greece) by Integrating GIS-Based Multi-Criteria Decision Analysis and Analytic Hierarchy Process," Land, MDPI, vol. 14(3), pages 1-24, March.
    9. Dipsikha Devi & Anupal Baruah & Arup Kumar Sarma, 2022. "Characterization of dam-impacted flood hydrograph and its degree of severity as a potential hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1989-2011, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:5:d:10.1007_s11069-024-06409-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.