IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i4d10.1007_s11069-023-06331-0.html
   My bibliography  Save this article

Engineering geological characterization and assessment of complex rock slope failures in Mudurnu, Turkey

Author

Listed:
  • Arzu Arslan Kelam

    (Middle East Technical University
    Purdue University)

  • Haluk Akgün

    (Middle East Technical University)

  • Antonio Bobet

    (Purdue University)

  • Mustafa Kerem Koçkar

    (Hacettepe University)

Abstract

Mudurnu County, situated in northwestern Turkey, is a prominent settlement area because it is located on major trade routes (i.e., the Silk Road and the Crimean Road) and has served as a trading town and a military base in the Byzantine, Seljuk, and Ottoman periods. Mudurnu County is affected by regional complex rock slope instabilities that pose a substantial hazard to the settlement area and generate regional risk to human life, buildings, houses, and industrial facilities. Mudurnu, because of its invaluable historical structures, has been nominated for the UNESCO World Heritage List. Yet, those historical structures are threatened by the rock instabilities. The aim of the paper is to characterize the rock mass on the western slopes of the Mudurnu Valley, through geomechanical evaluation of the rock and empirical assessment of the slope instabilities. The engineering geological and geomechanical properties of the area were acquired via a 3D point cloud together with field scan-line surveys. The western slope of the Mudurnu Valley was divided into 11 geomechanically uniform sectors. Classification of the sectors using the SMR and Q-slope methods demonstrated that the rock mass was prone to complex planar, wedge, and toppling failures. Proper identification of such complex failures was performed using a decision tree methodology. Estimation of the probabilities of the complex failures was accomplished using empirical classifications and field observations. It was found that Sector 8 was the most critical for combined toppling and wedge failures, as well as toppling with a combination of planar and wedge failures. In addition, Sector 6 was the most critical for combined toppling and planar failures.

Suggested Citation

  • Arzu Arslan Kelam & Haluk Akgün & Antonio Bobet & Mustafa Kerem Koçkar, 2024. "Engineering geological characterization and assessment of complex rock slope failures in Mudurnu, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3271-3298, March.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:4:d:10.1007_s11069-023-06331-0
    DOI: 10.1007/s11069-023-06331-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06331-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06331-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sahil Sardana & A. K. Verma & Rahul Verma & T. N. Singh, 2019. "Rock slope stability along road cut of Kulikawn to Saikhamakawn of Aizawl, Mizoram, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 753-767, November.
    2. Shantanu Sarkar & Koushik Pandit & Neeraj Dahiya & Prachi Chandna, 2021. "Quantified landslide hazard assessment based on finite element slope stability analysis for Uttarkashi–Gangnani Highway in Indian Himalayas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1895-1914, April.
    3. Xuan-hao Wang & Wei Cui & Gui-ke Zhang & Hong Yang, 2023. "Identification of rocky ledge on steep, high slopes based on UAV photogrammetry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3201-3224, April.
    4. S. Anbazhagan & V. Ramesh & S. E. Saranaathan, 2017. "Cut slope stability assessment along ghat road section of Kolli hills, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1081-1104, April.
    5. Syed Ahatsham Haider & Matloob Hussain & Aamir Ali & Muhammad Faheem Abbasi & Saad Wani, 2023. "Application of UAV photogrammetry and electrical resistivity tomography for characterization of a complex landslide: a case study from northwest Himalayas, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3043-3066, July.
    6. Siyuan Ma & Jiangbo Wei & Chong Xu & Xiaoyi Shao & Shiyang Xu & Shaofeng Chai & Yulong Cui, 2020. "UAV survey and numerical modeling of loess landslides: an example from Zaoling, southern Shanxi Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1125-1140, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeed Alqadhi & Javed Mallick & Meshel Alkahtani & Intikhab Ahmad & Dhafer Alqahtani & Hoang Thi Hang, 2024. "Developing a hybrid deep learning model with explainable artificial intelligence (XAI) for enhanced landslide susceptibility modeling and management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3719-3747, March.
    2. Chenchen Xie & Yuandong Huang & Lei Li & Tao Li & Chong Xu, 2023. "Detailed Inventory and Spatial Distribution Analysis of Rainfall-Induced Landslides in Jiexi County, Guangdong Province, China in August 2018," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    3. Dayuan Sun & Junzhuo Li & Yuanbo Gong, 2023. "Effects of Planting Density of Poaceae Species on Slope Community Characteristics and Artificial Soil Nutrients in High-Altitude Areas," Sustainability, MDPI, vol. 15(10), pages 1-11, May.
    4. Oussama Obda & Younes El Kharim & Ilias Obda & Mohamed Ahniche & Abdelaaziz El Kouffi, 2024. "Coastal rocky slopes instability analysis and landslide frequency-area distribution alongside the road network in west Mediterranean context (northern of Morocco)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(4), pages 3401-3428, March.
    5. Yu Zhou & Wenjun Lv & Zihan Zhou & Qiongqiong Tang & Guansheng Han & Jianshuai Hao & Weiqiang Chen & Faquan Wu, 2023. "New failure criterion for rock slopes with intermittent joints based on energy mutation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 407-425, August.
    6. Qin Yigen & Yang Genlan & Liu Bangyu & Xu Jinxing, 2024. "Study on deformation and failure mechanism of low-dip red bed slope with soft-hard interbedded structure: a case study of Chishui, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 10539-10557, September.
    7. Prithvendra Singh & Pijush Samui & Edy Tonnizam Mohamad & Ramesh Murlidhar Bhatawdekar & Wengang Zhang, 2024. "Application of MCS, GRNN, and GPR for performing the reliability analysis of rock slope," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(8), pages 7897-7917, June.
    8. Xuan-hao Wang & Wei Cui & Gui-ke Zhang & Hong Yang, 2023. "Identification of rocky ledge on steep, high slopes based on UAV photogrammetry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3201-3224, April.
    9. Yanlin Li & Aijun Yao & Yifei Gong, 2022. "Deformation and Failure Mechanism of a Massive Ancient Anti-Dip River-Damming Landslide in the Upper Jinsha River," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    10. Dinesh Kumar Malviya & Manojit Samanta & Rajesh Kumar Dash & Debi Prasanna Kanungo, 2024. "Anthropogenically induced instability in road cut slopes along NH-39, Manipur, North-East Indian Himalaya: Assessment and Mitigation Measures," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(3), pages 6239-6268, March.
    11. T. Siddque & S. P. Pradhan, 2018. "Stability and sensitivity analysis of Himalayan road cut debris slopes: an investigation along NH-58, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 577-600, September.
    12. Masanori Kohno & Yuki Higuchi & Yusuke Ono, 2023. "Evaluating earthquake-induced widespread slope failure hazards using an AHP-GIS combination," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1485-1512, March.
    13. Yulong Cui & Pengpeng Bao & Chong Xu & Gui Fu & Qisong Jiao & Yi Luo & Lingling Shen & Xiwei Xu & Fenglin Liu & Yuejun Lyu & Xiuhong Hu & Tao Li & Yongsheng Li & Yimin Liu & Yunfeng Tian, 2020. "A big landslide on the Jinsha River, Tibet, China: geometric characteristics, causes, and future stability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2051-2070, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:4:d:10.1007_s11069-023-06331-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.