IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i2d10.1007_s11069-023-06244-y.html
   My bibliography  Save this article

Influence of maximum water level and coastal inundation on the east coast of India based on future tropical cyclones

Author

Listed:
  • Vyshnavi Yalla

    (Indian Institute of Technology Madras)

  • V. Sriram

    (Indian Institute of Technology Madras)

  • K. Murali

    (Indian Institute of Technology Madras)

Abstract

The present paper investigates the impact of future scenarios for the past two storms (namely, Vardah and Madi). These two storms had a different intensity over Bay of Bengal, India. The recent study in this region shows that the influence of these Tropical Cyclones (TC) may be severe in future climatic conditions. Different future Representative concentration pathways (RCP) scenarios are investigated in this study. The combined sea level rise (SLR) and high wind intensity in future scenarios has been investigated in the present study for their influence on maximum water level (MWL), wave climate and coastal inundations. The coupled surge and wave models are used to analyze the influence of SLR and wind intensity for different RCPs. The variations of MWL and inundation extent with increase and decrease in wind increment for different RCPs of the TC’s were reported. Overall, for the Far Future RCP 8.5 scenario, the relative percentage of difference (compared to the current scenario) in MWL has increased by 135% for TC Vardah and 180% for TC Madi. Further, the flood area for TC’s Vardah and Madi will increase by 70% and 95% compared to the current scenario. Finally, the study reveals that the extreme wind intensity of the TC’s in future scenarios plays a significant contribution of up to 50% in coastal inundations.

Suggested Citation

  • Vyshnavi Yalla & V. Sriram & K. Murali, 2024. "Influence of maximum water level and coastal inundation on the east coast of India based on future tropical cyclones," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(2), pages 1263-1294, January.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:2:d:10.1007_s11069-023-06244-y
    DOI: 10.1007/s11069-023-06244-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06244-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06244-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. D. Rao & Puja Upadhaya & Smita Pandey & Jismy Poulose, 2020. "Simulation of extreme water levels in response to tropical cyclones along the Indian coast: a climate change perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 151-172, January.
    2. Munehiko Yamaguchi & Johnny C. L. Chan & Il-Ju Moon & Kohei Yoshida & Ryo Mizuta, 2020. "Global warming changes tropical cyclone translation speed," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    3. Yukiko Hirabayashi & Roobavannan Mahendran & Sujan Koirala & Lisako Konoshima & Dai Yamazaki & Satoshi Watanabe & Hyungjun Kim & Shinjiro Kanae, 2013. "Global flood risk under climate change," Nature Climate Change, Nature, vol. 3(9), pages 816-821, September.
    4. Ning Lin & Kerry Emanuel & Michael Oppenheimer & Erik Vanmarcke, 2012. "Physically based assessment of hurricane surge threat under climate change," Nature Climate Change, Nature, vol. 2(6), pages 462-467, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbora Šedová & Lucia Čizmaziová & Athene Cook, 2021. "A meta-analysis of climate migration literature," CEPA Discussion Papers 29, Center for Economic Policy Analysis.
    2. Eric Kemp-Benedict & Jonathan Lamontagne & Timothy Laing & Crystal Drakes, 2019. "Climate Impacts on Capital Accumulation in the Small Island State of Barbados," Sustainability, MDPI, vol. 11(11), pages 1-23, June.
    3. J. K. Summers & A. Lamper & C. McMillion & L. C. Harwell, 2022. "Observed Changes in the Frequency, Intensity, and Spatial Patterns of Nine Natural Hazards in the United States from 2000 to 2019," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    4. Xin Wen & Ana María Alarcón Ferreira & Lynn M. Rae & Hirmand Saffari & Zafar Adeel & Laura A. Bakkensen & Karla M. Méndez Estrada & Gregg M. Garfin & Renee A. McPherson & Ernesto Franco Vargas, 2022. "A Comprehensive Methodology for Evaluating the Economic Impacts of Floods: An Application to Canada, Mexico, and the United States," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    5. Haixing Liu & Yuntao Wang & Chi Zhang & Albert S. Chen & Guangtao Fu, 2018. "Assessing real options in urban surface water flood risk management under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 1-18, October.
    6. Yuki Miura & Huda Qureshi & Chanyang Ryoo & Philip C. Dinenis & Jiao Li & Kyle T. Mandli & George Deodatis & Daniel Bienstock & Heather Lazrus & Rebecca Morss, 2021. "A methodological framework for determining an optimal coastal protection strategy against storm surges and sea level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1821-1843, June.
    7. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    8. Jui-Chan Hsu & Wei-Po Huang & Chun-Jhen Ye, 2024. "Comparing the Dominant Factors in Coastal Morphology: Inappropriate Infrastructure vs. Climate Change—A Case Study of the Hsinchu Fishery Harbor, Taiwan," Sustainability, MDPI, vol. 16(13), pages 1-24, June.
    9. Dilshad Ahmad & Muhammad Afzal, 2021. "Impact of climate change on pastoralists’ resilience and sustainable mitigation in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11406-11426, August.
    10. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    11. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    12. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.
    13. Maruyama Rentschler,Jun Erik & Salhab,Melda, 2020. "People in Harm's Way : Flood Exposure and Poverty in 189 Countries," Policy Research Working Paper Series 9447, The World Bank.
    14. Shuhei Yoshimoto & Giriraj Amarnath, 2018. "Application of a flood inundation model to analyze the potential impacts of a flood control plan in Mundeni Aru river basin, Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 491-513, March.
    15. Byungdoo Kim & David L. Kay & Jonathon P. Schuldt, 2021. "Will I have to move because of climate change? Perceived likelihood of weather- or climate-related relocation among the US public," Climatic Change, Springer, vol. 165(1), pages 1-8, March.
    16. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    17. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    18. Yus Budiyono & Jeroen Aerts & JanJaap Brinkman & Muh Marfai & Philip Ward, 2015. "Flood risk assessment for delta mega-cities: a case study of Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 389-413, January.
    19. Junli Xu & Yuhong Zhang & Xianqing Lv & Qiang Liu, 2019. "Inversion of Wind-Stress Drag Coefficient in Simulating Storm Surges by Means of Regularization Technique," IJERPH, MDPI, vol. 16(19), pages 1-16, September.
    20. Bethany Robinson & Jonathan D. Herman, 2019. "A framework for testing dynamic classification of vulnerable scenarios in ensemble water supply projections," Climatic Change, Springer, vol. 152(3), pages 431-448, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:2:d:10.1007_s11069-023-06244-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.