IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v116y2023i2d10.1007_s11069-022-05738-5.html
   My bibliography  Save this article

Performance of ERA5 winds on computed storm surge and wave–current interaction using a coupled model during Ockhi cyclone

Author

Listed:
  • S. V. Samiksha

    (CSIR-National Institute of Oceanography
    Academy of Scientific and Innovative Research, School of Oceanography)

  • A. Tharani

    (Anna University)

  • V. Sanil Kumar

    (CSIR-National Institute of Oceanography
    Academy of Scientific and Innovative Research, School of Oceanography)

  • Charls Antony

    (Indian National Centre for Ocean Information Services)

Abstract

A fully coupled numerical model was setup to simulate tides as well as storm surges and waves generated by the very severe cyclonic storm Ockhi, which occurred in the Arabian Sea during 29 November–6 December 2017. ERA5 hourly wind data as well as cyclonic winds generated from a parametric wind model were used separately as input to assess the accuracy of these winds in generating waves during cyclones. Both the data produced reasonably accurate maximum surge heights, with an underestimation of ≈ 0.2 m in the model surge height from one another. The results showed that model forced with ERA5 winds could reproduce the cyclone-generated waves to better accuracy than the waves generated by the parametric model winds. With ERA5 winds, coupled model generated Hs ≈ 1.12 m and the standalone model generated Hs ≈ 1.44 m. Results showed that due to wave–current interaction, Hs reduced by 0.32 m. The modelled waves showed an underestimation of 1–2 m during cyclone peak in the deep waters, whereas it matches closely with the measurements in the coastal region. It was also observed that during the cyclone, the NE monsoon enhanced the ebbing flow and reduced the flooding, which caused change in the current flow direction at the time of landfall.

Suggested Citation

  • S. V. Samiksha & A. Tharani & V. Sanil Kumar & Charls Antony, 2023. "Performance of ERA5 winds on computed storm surge and wave–current interaction using a coupled model during Ockhi cyclone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1759-1774, March.
  • Handle: RePEc:spr:nathaz:v:116:y:2023:i:2:d:10.1007_s11069-022-05738-5
    DOI: 10.1007/s11069-022-05738-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05738-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05738-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Dube & Indu Jain & A. Rao & T. Murty, 2009. "Storm surge modelling for the Bay of Bengal and Arabian Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 3-27, October.
    2. K. Vinod Kumar & V. Aboobacker & P. Saheed & P. Vethamony, 2012. "Coastal circulation along the central west coast of India during cyclone Phyan: measurements and numerical simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 259-271, October.
    3. A. Rao & P. Chittibabu & T. Murty & S. Dube & U. Mohanty, 2007. "Vulnerability from storm surges and cyclone wind fields on the coast of Andhra Pradesh, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(3), pages 515-529, June.
    4. Smita Pandey & A. D. Rao, 2018. "An improved cyclonic wind distribution for computation of storm surges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 93-112, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. D. Rao & Puja Upadhaya & Smita Pandey & Jismy Poulose, 2020. "Simulation of extreme water levels in response to tropical cyclones along the Indian coast: a climate change perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 151-172, January.
    2. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    3. B. Sindhu & A. Unnikrishnan, 2012. "Return period estimates of extreme sea level along the east coast of India from numerical simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1007-1028, April.
    4. Usha Natesan & P. Rajalakshmi & M. Ramana Murthy & Vincent Ferrer, 2013. "Estimation of wave heights during cyclonic conditions using wave propagation model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1751-1766, December.
    5. S. Niggol Seo, 2017. "Measuring Policy Benefits Of The Cyclone Shelter Program In The North Indian Ocean: Protection From Intense Winds Or High Storm Surges?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-18, November.
    6. Xue Jin & Xiaoxia Shi & Jintian Gao & Tongbin Xu & Kedong Yin, 2018. "Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups," IJERPH, MDPI, vol. 15(4), pages 1-19, March.
    7. K. K. Basheer Ahammed & Arvind Chandra Pandey & Bikash Ranjan Parida & Wasim & Chandra Shekhar Dwivedi, 2023. "Impact Assessment of Tropical Cyclones Amphan and Nisarga in 2020 in the Northern Indian Ocean," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    8. Shuxian Liu & Yang Liu & Zhigang Chu & Kun Yang & Guanlan Wang & Lisheng Zhang & Yuanda Zhang, 2023. "Evaluation of Tropical Cyclone Disaster Loss Using Machine Learning Algorithms with an eXplainable Artificial Intelligence Approach," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    9. Edward Helderop & Tony H. Grubesic, 2022. "Hurricane storm surge: toward a normalized damage index for coastal regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1179-1197, January.
    10. Raghu Nadimpalli & Krishna K. Osuri & Sujata Pattanayak & U. C. Mohanty & M. M. Nageswararao & S. Kiran Prasad, 2016. "Real-time prediction of movement, intensity and storm surge of very severe cyclonic storm Hudhud over Bay of Bengal using high-resolution dynamical model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1771-1795, April.
    11. Yashvant Das, 2018. "Parametric modeling of tropical cyclone wind fields in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 1049-1084, September.
    12. Sudong Xu & Wenrui Huang & Guiping Zhang & Feng Gao & Xiaomin Li, 2014. "Integrating Monte Carlo and hydrodynamic models for estimating extreme water levels by storm surge in Colombo, Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 703-721, March.
    13. M. Mohapatra & G. Mandal & B. Bandyopadhyay & Ajit Tyagi & U. Mohanty, 2012. "Classification of cyclone hazard prone districts of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1601-1620, September.
    14. F. G. Schmitt & A. Crapoulet & A. Hequette & Y. Huang, 2018. "Nonlinear dynamics of the sea level time series in the eastern English Channel," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 267-285, March.
    15. Min Zhang & Yu Huang & Yangjuan Bao, 2016. "The mechanism of shallow submarine landslides triggered by storm surge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1373-1383, March.
    16. A. Rao & Indu Jain & M. Murthy & T. Murty & S. Dube, 2009. "Impact of cyclonic wind field on interaction of surge–wave computations using finite-element and finite-difference models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(2), pages 225-239, May.
    17. Xue Jin & U. Rashid Sumaila & Kedong Yin, 2020. "Direct and Indirect Loss Evaluation of Storm Surge Disaster Based on Static and Dynamic Input-Output Models," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    18. Edris Alam & Dale Dominey-Howes, 2016. "A catalogue of earthquakes between 810BC and 2012 for the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 2031-2102, April.
    19. Min Zhang & Yu Huang & Yangjuan Bao, 2016. "The mechanism of shallow submarine landslides triggered by storm surge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1373-1383, March.
    20. Pavel Tkalich & P. Vethamony & M. Babu & Paola Malanotte-Rizzoli, 2013. "Storm surges in the Singapore Strait due to winds in the South China Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1345-1362, April.

    More about this item

    Keywords

    Ockhi cyclone; Waves; Storm surge; ERA5 winds; Indian Ocean;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:116:y:2023:i:2:d:10.1007_s11069-022-05738-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.