IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v116y2023i1d10.1007_s11069-022-05687-z.html
   My bibliography  Save this article

A new early warning Criterion for assessing landslide risk

Author

Listed:
  • Yan Du

    (University of Science and Technology Beijing)

  • Lize Ning

    (University of Science and Technology Beijing)

  • Santos D . Chicas

    (Humboldt- Universitat zu Berlin)

  • Mowen Xie

    (University of Science and Technology Beijing)

Abstract

A large number of engineering case studies have shown that the traditional early warning criteria, which evolved on the basis of displacement as a single piece of information, have many limitations in practical engineering. The displacement speed ratio (DSR) cannot determine the development trend of landslides due to the influence of periodic external environmental factors. Moreover, when landslides occur, the early warning system will have a false alarm due to the stepwise giant rise of landslides. To solve this problem, this paper proposes a new landslide warning criterion, the trend speed ratio (TSR), and also fuses TSR and DSR into a dual speed ratio method (DSRM) for judging landslide risk changes. We assess these methods by applying DSRM and DSR to 10 landslide cases, respectively. The results show that when TSR is greater than 2.0, the probability of landslide damage is high and when TSR tends to decrease, the landslide tends to be stable. For landslides that rise sharply in steps but are not damaged, DSR has a high false alarm rate, while DSRM can effectively reduce the false alarm rate. In terms of warning applicability, DSR can be applied in only half of the ten landslide cases studied, while DSRM is significantly more applicable. In addition, compared with the traditional method, the new method can determine the direction of landslide development and assess the risk of step-up landslides, providing new technical support for engineers engaged in landslide warning and control.

Suggested Citation

  • Yan Du & Lize Ning & Santos D . Chicas & Mowen Xie, 2023. "A new early warning Criterion for assessing landslide risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 537-549, March.
  • Handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05687-z
    DOI: 10.1007/s11069-022-05687-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05687-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05687-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. J. Jeng & S. S. Chen & C. H. Tseng, 2022. "A case study on the slope displacement criterion at the critical accelerated stage triggered by rainfall and long-term creep behavior," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2277-2312, July.
    2. Yan Du & Mowen Xie, 2022. "Indirect method for the quantitative identification of unstable rock," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 1005-1012, May.
    3. Han Du & Danqing Song, 2022. "Investigation of failure prediction of open-pit coal mine landslides containing complex geological structures using the inverse velocity method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2819-2854, April.
    4. Sornette, D & Helmstetter, A & Andersen, J.V & Gluzman, S & Grasso, J.-R & Pisarenko, V, 2004. "Towards landslide predictions: two case studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 605-632.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Zhou & Wenjun Lv & Zihan Zhou & Qiongqiong Tang & Guansheng Han & Jianshuai Hao & Weiqiang Chen & Faquan Wu, 2023. "New failure criterion for rock slopes with intermittent joints based on energy mutation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 407-425, August.
    2. Xiuzhen Li & Jiming Kong & Zhenyu Wang, 2012. "Landslide displacement prediction based on combining method with optimal weight," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 635-646, March.
    3. Danqing Song & Wanpeng Shi & Chengwen Wang & Lihu Dong & Xin He & Enge Wu & Jianjun Zhao & Runhu Lu, 2023. "Numerical Investigation of a Local Precise Reinforcement Method for Dynamic Stability of Rock Slope under Earthquakes Using Continuum–Discontinuum Element Method," Sustainability, MDPI, vol. 15(3), pages 1-24, January.
    4. Gianluca Martelloni & Franco Bagnoli, 2014. "Infiltration effects on a two-dimensional molecular dynamics model of landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(1), pages 37-62, August.
    5. Linfeng Wang & Jixu Zhang & Xiaoming Huang & Guojin Tan, 2023. "Study on the Dynamic Stability and Spectral Characteristics of a Toppling Dangerous Rock Mass under Seismic Excitation," Sustainability, MDPI, vol. 15(21), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05687-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.