IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i3d10.1007_s11009-021-09888-0.html
   My bibliography  Save this article

Conditional Tail Expectation Decomposition and Conditional Mean Risk Sharing for Dependent and Conditionally Independent Losses

Author

Listed:
  • Michel Denuit

    (Institute of Statistics, Biostatistics and Actuarial Science - ISBA Louvain Institute of Data Analysis and Modeling - LIDAM UCLouvain)

  • Christian Y. Robert

    (Laboratory in Finance and Insurance - LFA CREST - Center for Research in Economics and Statistics ENSAE)

Abstract

Conditional tail expectations are often used in risk measurement and capital allocation. Conditional mean risk sharing appears to be effective in collaborative insurance, to distribute total losses among participants. This paper develops analytical results for risk allocation among different, correlated units based on conditional tail expectations and conditional mean risk sharing. Results available in the literature for independent risks are extended to correlated ones, in a unified way. The approach is applied to mixture models with correlated latent factors that are often used in practice. Conditional Monte Carlo simulation procedures are proposed in that setting.

Suggested Citation

  • Michel Denuit & Christian Y. Robert, 2022. "Conditional Tail Expectation Decomposition and Conditional Mean Risk Sharing for Dependent and Conditionally Independent Losses," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1953-1985, September.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09888-0
    DOI: 10.1007/s11009-021-09888-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-021-09888-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-021-09888-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denuit, Michel & Dhaene, Jan, 2012. "Convex order and comonotonic conditional mean risk sharing," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 265-270.
    2. Edward Furman & Ričardas Zitikis, 2007. "“An Actuarial Premium Pricing Model for Nonnormal Insurance and Financial Risks in Incomplete Markets”, Zinoviy Landsman and Michael Sherris, January 2007," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(3), pages 174-176.
    3. Michel Denuit, 2021. "Reply to Edward Furman, Yisub Kye, and Jianxi Su on Their Discussion on the Paper Titled “Size-Biased Risk Measures of Compound Sums”," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(4), pages 637-638, November.
    4. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
    5. Denuit, Michel, 2021. "Reply to Edward Furman, Yisub Kye, and Jianxi Su on Their Discussion on the Paper Titled “Size-Biased Risk Measures of Compound Sums”," LIDAM Reprints ISBA 2021055, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Côté, Marie-Pier & Genest, Christian, 2019. "Dependence in a background risk model," Journal of Multivariate Analysis, Elsevier, vol. 172(C), pages 28-46.
    7. Horn, Roger A. & Steutel, F. W., 1978. "On multivariate infinitely divisible distributions," Stochastic Processes and their Applications, Elsevier, vol. 6(2), pages 139-151, January.
    8. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    9. Edward Furman & Ričardas Zitikis, 2009. "Weighted Pricing Functionals With Applications to Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(4), pages 483-496.
    10. Denuit, Michel M. & Mesfioui, Mhamed, 2017. "Preserving the Rothschild–Stiglitz type increase in risk with background risk: A characterization," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 1-5.
    11. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    12. Guo, Xu & Li, Jingyuan & Liu, Dongri & Wang, Jianli, 2016. "Preserving the Rothschild–Stiglitz type of increasing risk with background risk," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 144-149.
    13. Denuit, Michel & Mesfioui, Mhamed, 2017. "Preserving the Rothschild–Stiglitz type increase in risk with background risk: A characterization," LIDAM Reprints ISBA 2017002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Denuit, Michel & Kiriliouk, Anna & Segers, Johan, 2015. "Max-factor individual risk models with application to credit portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 162-172.
    15. Denuit, Michel, 2021. "Reply to Jiandong Ren on Their Discussion on the Paper Titled “Size-Biased Risk Measures of Compound Sums”," LIDAM Reprints ISBA 2021054, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Denuit, Michel & Kiriliouk, Anna & Segers, Johan, 2015. "Max-factor individual risk models with application to credit portfolios," LIDAM Reprints ISBA 2015011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Joseph H. T. Kim & Jiwook Jang & Chaehyun Pyun, 2019. "Capital Allocation for a Sum of Dependent Compound Mixed Poisson Variables: A Recursive Algorithm Approach," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(1), pages 82-97, January.
    18. Denuit, Michel, 2019. "Size-Biased Transform And Conditional Mean Risk Sharing, With Application To P2p Insurance And Tontines," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 591-617, September.
    19. Gupta, Rameshwar D. & Richards, Donald St.P., 1987. "Multivariate Liouville distributions," Journal of Multivariate Analysis, Elsevier, vol. 23(2), pages 233-256, December.
    20. Denuit, Michel, 2019. "Size-biased transform and conditional mean risk sharing, with application to P2P insurance and tontines," LIDAM Discussion Papers ISBA 2019010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Furman, Edward & Landsman, Zinoviy, 2005. "Risk capital decomposition for a multivariate dependent gamma portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 635-649, December.
    22. Denuit, Michel, 2019. "Size-biased transform and conditional mean risk sharing, with application to P2P insurance and tontines," LIDAM Reprints ISBA 2019038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denuit, Michel & Robert, Christian Y., 2023. "From risk reduction to risk elimination by conditional mean risk sharing of independent losses," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 46-59.
    2. Denuit, Michel & Ortega-Jimenez, Patricia & Robert, Christian Y., 2024. "No-sabotage under conditional mean risk sharing of dependent-by-mixture insurance losses," LIDAM Discussion Papers ISBA 2024019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denuit, Michel & Robert, Christian Y., 2020. "Conditional tail expectation decomposition and conditional mean risk sharing for dependent and conditionally independent risks," LIDAM Discussion Papers ISBA 2020018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Denuit, Michel, 2019. "Size-biased risk measures of compound sums," LIDAM Discussion Papers ISBA 2019009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Denuit, Michel & Robert, Christian Y., 2020. "From risk sharing to risk transfer: the analytics of collaborative insurance," LIDAM Discussion Papers ISBA 2020017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Denuit, M. & Robert, C.Y., 2020. "Ultimate behavior of conditional mean risk sharing for independent compound Panjer-Katz sums with gamma and Pareto severities," LIDAM Discussion Papers ISBA 2020014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Denuit, Michel & Ortega-Jimenez, Patricia & Robert, Christian Y., 2024. "No-sabotage under conditional mean risk sharing of dependent-by-mixture insurance losses," LIDAM Discussion Papers ISBA 2024019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Michel Denuit & Christian Y. Robert, 2021. "Risk sharing under the dominant peer‐to‐peer property and casualty insurance business models," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(2), pages 181-205, June.
    7. Denuit, Michel & Robert, Christian Y., 2021. "Risk sharing under the dominant peer-to-peer property and casualty insurance business models," LIDAM Discussion Papers ISBA 2021001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Denuit, Michel & Robert, Christian Y., 2020. "Risk reduction by conditional mean risk sharing with application to collaborative insurance," LIDAM Discussion Papers ISBA 2020024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Denuit, Michel & Robert, Christian Y., 2021. "From risk sharing to pure premium for a large number of heterogeneous losses," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 116-126.
    10. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    11. Fallou Niakh, 2023. "A fixed point approach for computing actuarially fair Pareto optimal risk-sharing rules," Papers 2303.05421, arXiv.org, revised Jul 2023.
    12. Denuit, Michel & Robert, Christian Y., 2021. "Polynomial series expansions and moment approximations for conditional mean risk sharing of insurance losses," LIDAM Discussion Papers ISBA 2021016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Michel Denuit & Jan Dhaene & Christian Y. Robert, 2022. "Risk‐sharing rules and their properties, with applications to peer‐to‐peer insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 615-667, September.
    14. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    15. Michel Denuit & Christian Y. Robert, 2024. "Conditional Mean Risk Sharing of Independent Discrete Losses in Large Pools," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-22, December.
    16. Denuit, Michel & Robert, Christian Y., 2023. "From risk reduction to risk elimination by conditional mean risk sharing of independent losses," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 46-59.
    17. Denuit, Michel & Robert, Christian Y., 2023. "Conditional mean risk sharing of independent discrete losses in large pools," LIDAM Discussion Papers ISBA 2023010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Denuit, Michel & Ortega-Jimenez, Patricia & Robert, Christian Y., 2024. "Conditional expectations given the sum of independent random variables with regularly varying densities," LIDAM Discussion Papers ISBA 2024006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Zhanyi Jiao & Steven Kou & Yang Liu & Ruodu Wang, 2022. "An axiomatic theory for anonymized risk sharing," Papers 2208.07533, arXiv.org, revised May 2023.
    20. Denuit, Michel, 2019. "Investing in your own and peers' risks: The simple analytics of p2p insurance," LIDAM Discussion Papers ISBA 2019028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09888-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.