IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v99y2024i1d10.1007_s00186-023-00848-7.html
   My bibliography  Save this article

The non-preemptive ‘Join the Shortest Queue–Serve the Longest Queue’ service system with or without switch-over times

Author

Listed:
  • Efrat Perel

    (Afeka Tel Aviv Academic College of Engineering)

  • Nir Perel

    (Afeka Tel Aviv Academic College of Engineering)

  • Uri Yechiali

    (Tel Aviv University)

Abstract

A 2-queue system with a single-server operating according to the combined ‘Join the Shortest Queue–Serve the Longest Queue’ regime is analyzed. Both cases, with or without server’s switch-over times, are investigated under the non-preemptive discipline. Instead of dealing with a state space comprised of two un-bounded dimensions, a non-conventional formulation is constructed, leading to an alternative two-dimensional state space, where only one dimension is infinite. As a result, the system is defined as a quasi birth and death process and is analyzed via both the probability generating functions method and the matrix geometric formulation. Consequently, the system’s two-dimensional probability mass function is derived, from which the system’s performance measures, such as mean queue sizes, mean sojourn times, fraction of time the server resides in each queue, correlation coefficient between the queue sizes, and the probability mass function of the difference between the queue sizes, are obtained. Extensive numerical results for various values of the system’s parameters are presented, as well as a comparison between the current non-preemptive model and its twin system of preemptive service regime. One of the conclusions is that, depending on the variability of the various parameters, the preemptive regime is not necessarily more efficient than the non-preemptive one. Finally, economic issues are discussed and numerical comparisons are presented, showing the advantages and disadvantages of each regime.

Suggested Citation

  • Efrat Perel & Nir Perel & Uri Yechiali, 2024. "The non-preemptive ‘Join the Shortest Queue–Serve the Longest Queue’ service system with or without switch-over times," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 99(1), pages 3-38, April.
  • Handle: RePEc:spr:mathme:v:99:y:2024:i:1:d:10.1007_s00186-023-00848-7
    DOI: 10.1007/s00186-023-00848-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-023-00848-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-023-00848-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tuan Phung-Duc, 2017. "Exact solutions for M/M/c/Setup queues," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(2), pages 309-324, February.
    2. J. W. Cohen, 1998. "Analysis of the asymmetrical shortest two-server queueing model," International Journal of Stochastic Analysis, Hindawi, vol. 11, pages 1-48, January.
    3. Anton Braverman, 2020. "Steady-State Analysis of the Join-the-Shortest-Queue Model in the Halfin–Whitt Regime," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1069-1103, August.
    4. Patrick Eschenfeldt & David Gamarnik, 2018. "Join the Shortest Queue with Many Servers. The Heavy-Traffic Asymptotics," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 867-886, August.
    5. Ivo J. B. F. Adan & Onno J. Boxma & Stella Kapodistria & Vidyadhar G. Kulkarni, 2016. "The shorter queue polling model," Annals of Operations Research, Springer, vol. 241(1), pages 167-200, June.
    6. Charles Knessl & Haishen Yao, 2013. "On the Nonsymmetric Longer Queue Model: Joint Distribution, Asymptotic Properties, and Heavy Traffic Limits," Advances in Operations Research, Hindawi, vol. 2013, pages 1-21, May.
    7. Noam Paz & Uri Yechiali, 2014. "An M/M/1 Queue In Random Environment With Disasters," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(03), pages 1-12.
    8. Offer Kella & Uri Yechiali, 1988. "Priorities in M/G/1 queue with server vacations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(1), pages 23-34, February.
    9. Mor Armony & Efrat Perel & Nir Perel & Uri Yechiali, 2019. "Exact analysis for multiserver queueing systems with cross selling," Annals of Operations Research, Springer, vol. 274(1), pages 75-100, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danielle Tibi, 2019. "Martingales and buffer overflow for the symmetric shortest queue model," Queueing Systems: Theory and Applications, Springer, vol. 93(1), pages 153-190, October.
    2. Herwig Bruneel & Arnaud Devos, 2024. "Explicit Solutions for Coupled Parallel Queues," Mathematics, MDPI, vol. 12(15), pages 1-31, July.
    3. Debankur Mukherjee, 2022. "Rates of convergence of the join the shortest queue policy for large-system heavy traffic," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 317-319, April.
    4. Daniela Hurtado-Lange & Siva Theja Maguluri, 2022. "A load balancing system in the many-server heavy-traffic asymptotics," Queueing Systems: Theory and Applications, Springer, vol. 101(3), pages 353-391, August.
    5. Rami Atar & David Lipshutz, 2021. "Heavy Traffic Limits for Join-the-Shortest-Estimated-Queue Policy Using Delayed Information," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 268-300, February.
    6. Ioannis Dimitriou, 2021. "On partially homogeneous nearest-neighbour random walks in the quarter plane and their application in the analysis of two-dimensional queues with limited state-dependency," Queueing Systems: Theory and Applications, Springer, vol. 98(1), pages 95-143, June.
    7. Sem Borst & Onno Boxma, 2018. "Polling: past, present, and perspective," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 335-369, October.
    8. Jianjun Li & Liwei Liu & Tao Jiang, 2018. "Analysis of an M/G/1 queue with vacations and multiple phases of operation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 51-72, February.
    9. Steve Derkic & James E. Stafford, 2002. "Symbolic Computation of Moments in Priority Queues," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 261-277, August.
    10. Vladimir Vishnevsky & Olga Semenova, 2021. "Polling Systems and Their Application to Telecommunication Networks," Mathematics, MDPI, vol. 9(2), pages 1-30, January.
    11. Anatoly Nazarov & Alexander Moiseev & Tuan Phung-Duc & Svetlana Paul, 2020. "Diffusion Limit of Multi-Server Retrial Queue with Setup Time," Mathematics, MDPI, vol. 8(12), pages 1-20, December.
    12. uit het Broek, Michiel A.J. & Van der Heide, Gerlach & Van Foreest, Nicky D., 2020. "Energy-saving policies for temperature-controlled production systems with state-dependent setup times and costs," European Journal of Operational Research, Elsevier, vol. 287(3), pages 916-928.
    13. Gabi Hanukov, 2023. "A queueing-inventory model with skeptical and trusting customers," Annals of Operations Research, Springer, vol. 331(2), pages 763-786, December.
    14. Douglas G. Down, 2022. "Optimal control of energy-aware queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 417-419, April.
    15. Debankur Mukherjee & Sem C. Borst & Johan S. H. van Leeuwaarden & Philip A. Whiting, 2020. "Asymptotic Optimality of Power-of- d Load Balancing in Large-Scale Systems," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1535-1571, November.
    16. Mor Armony & Efrat Perel & Nir Perel & Uri Yechiali, 2019. "Exact analysis for multiserver queueing systems with cross selling," Annals of Operations Research, Springer, vol. 274(1), pages 75-100, March.
    17. Hanukov, Gabi, 2022. "Improving efficiency of service systems by performing a part of the service without the customer's presence," European Journal of Operational Research, Elsevier, vol. 302(2), pages 606-620.
    18. Anton Braverman, 2020. "Steady-State Analysis of the Join-the-Shortest-Queue Model in the Halfin–Whitt Regime," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1069-1103, August.
    19. Varun Gupta & Neil Walton, 2019. "Load Balancing in the Nondegenerate Slowdown Regime," Operations Research, INFORMS, vol. 67(1), pages 281-294, January.
    20. Tuan Phung-Duc & Ken’ichi Kawanishi, 2020. "Delay performance of data-center queue with setup policy and abandonment," Annals of Operations Research, Springer, vol. 293(1), pages 269-293, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:99:y:2024:i:1:d:10.1007_s00186-023-00848-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.