IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v62y2005i2p187-209.html
   My bibliography  Save this article

ɛ-Subdifferentials of Set-valued Maps and ɛ-Weak Pareto Optimality for Multiobjective Optimization

Author

Listed:
  • A. Taa

Abstract

In this paper we consider vector optimization problems where objective and constraints are set-valued maps. Optimality conditions in terms of Lagrange-multipliers for an ɛ-weak Pareto minimal point are established in the general case and in the case with nearly subconvexlike data. A comparison with existing results is also given. Our method used a special scalarization function, introduced in optimization by Hiriart-Urruty. Necessary and sufficient conditions for the existence of an ɛ-weak Pareto minimal point are obtained. The relation between the set of all ɛ-weak Pareto minimal points and the set of all weak Pareto minimal points is established. The ɛ-subdifferential formula of the sum of two convex functions is also extended to set-valued maps via well known results of scalar optimization. This result is applied to obtain the Karush–Kuhn–Tucker necessary conditions, for ɛ-weak Pareto minimal points Copyright Springer-Verlag 2005

Suggested Citation

  • A. Taa, 2005. "ɛ-Subdifferentials of Set-valued Maps and ɛ-Weak Pareto Optimality for Multiobjective Optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(2), pages 187-209, November.
  • Handle: RePEc:spr:mathme:v:62:y:2005:i:2:p:187-209
    DOI: 10.1007/s00186-005-0007-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-005-0007-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-005-0007-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Z. F. Li, 1998. "Benson Proper Efficiency in the Vector Optimization of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 623-649, September.
    2. Johannes Jahn & Rüdiger Rauh, 1997. "Contingent epiderivatives and set-valued optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(2), pages 193-211, June.
    3. J. B. Hiriart-Urruty, 1979. "Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces," Mathematics of Operations Research, INFORMS, vol. 4(1), pages 79-97, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crespi Giovanni P. & Ginchev Ivan & Rocca Matteo, 2004. "First order optimality conditions in set-valued optimization," Economics and Quantitative Methods qf04010, Department of Economics, University of Insubria.
    2. Zhiang Zhou & Wenbin Wei & Fei Huang & Kequan Zhao, 2024. "Approximate weak efficiency of the set-valued optimization problem with variable ordering structures," Journal of Combinatorial Optimization, Springer, vol. 48(3), pages 1-13, October.
    3. Y. D. Xu & S. J. Li, 2013. "Optimality Conditions for Generalized Ky Fan Quasi-Inequalities with Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 663-684, June.
    4. Crespi Giovanni P. & Ginchev Ivan & Rocca Matteo, 2004. "First order optimality condition for constrained set-valued optimization," Economics and Quantitative Methods qf04014, Department of Economics, University of Insubria.
    5. Jian-Wen Peng & Wen-Bin Wei & Refail Kasimbeyli, 2025. "Linear and Nonlinear Scalarization Methods for Vector Optimization Problems with Variable Ordering Structures," Journal of Optimization Theory and Applications, Springer, vol. 206(1), pages 1-21, July.
    6. Marius Durea & Radu Strugariu & Christiane Tammer, 2013. "Scalarization in Geometric and Functional Vector Optimization Revisited," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 635-655, December.
    7. P. Q. Khanh & N. D. Tuan, 2008. "Higher-Order Variational Sets and Higher-Order Optimality Conditions for Proper Efficiency in Set-Valued Nonsmooth Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 243-261, November.
    8. Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022. "Nonsmooth Implicit Differentiation for Machine Learning and Optimization," TSE Working Papers 22-1314, Toulouse School of Economics (TSE).
    9. Khushboo & C. S. Lalitha, 2018. "Scalarizations for a unified vector optimization problem based on order representing and order preserving properties," Journal of Global Optimization, Springer, vol. 70(4), pages 903-916, April.
    10. Ginchev Ivan & Guerraggio Angelo & Rocca Matteo, 2003. "First-Order Conditions for C0,1 Constrained vector optimization," Economics and Quantitative Methods qf0307, Department of Economics, University of Insubria.
    11. Xiang-Kai Sun & Sheng-Jie Li, 2014. "Generalized second-order contingent epiderivatives in parametric vector optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 351-363, February.
    12. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "Robustness Characterizations for Uncertain Optimization Problems via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 459-479, August.
    13. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
    14. Nguyen Thi Toan & Le Quang Thuy, 2023. "S-Derivative of the Extremum Multifunction to a Multi-objective Parametric Discrete Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 240-265, January.
    15. Rocca Matteo & Papalia Melania, 2008. "Well-posedness in vector optimization and scalarization results," Economics and Quantitative Methods qf0807, Department of Economics, University of Insubria.
    16. Elvira Hernández & Luis Rodríguez-Marín, 2011. "Weak and Strong Subgradients of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 352-365, May.
    17. Tran Van Su, 2023. "Optimality and duality for nonsmooth mathematical programming problems with equilibrium constraints," Journal of Global Optimization, Springer, vol. 85(3), pages 663-685, March.
    18. Nguyen Anh & Phan Khanh, 2013. "Higher-order optimality conditions in set-valued optimization using radial sets and radial derivatives," Journal of Global Optimization, Springer, vol. 56(2), pages 519-536, June.
    19. Tran Su & Dinh Dieu Hang, 2022. "Optimality and duality in nonsmooth multiobjective fractional programming problem with constraints," 4OR, Springer, vol. 20(1), pages 105-137, March.
    20. S. J. Li & Y. D. Xu & S. K. Zhu, 2012. "Nonlinear Separation Approach to Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 842-856, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:62:y:2005:i:2:p:187-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.