IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v101y2025i2d10.1007_s00186-025-00894-3.html
   My bibliography  Save this article

Relaxed Inertial Subgradient Extragradient Algorithm for Solving Equilibrium Problems

Author

Listed:
  • Chidi Elijah Nwakpa

    (University of the Witwatersrand)

  • Austine Efut Ofem

    (University of KwaZulu-Natal)

  • Chinedu Izuchukwu

    (University of the Witwatersrand)

  • Chibueze Christian Okeke

    (University of the Witwatersrand)

Abstract

We propose a relaxed inertial subgradient extragradient algorithm for solving equilibrium problems in a real Hilbert space. Under the assumption that the associated bivariate function is pseudomonotone and satisfies the Lipschitzness, we establish that the generated sequence of our proposed algorithm converges weakly to the equilibria set of the equilibrium problem. Furthermore, we obtain a linear convergence rate under the assumption that the bifunction is strongly pseudomonotone. We apply our proposed algorithm to variational inequality and fixed point problems. Finally, we compare our method with other schemes in the literature and the improvement brought by our proposed method is evident in the numerical experiments considered in this paper.

Suggested Citation

  • Chidi Elijah Nwakpa & Austine Efut Ofem & Chinedu Izuchukwu & Chibueze Christian Okeke, 2025. "Relaxed Inertial Subgradient Extragradient Algorithm for Solving Equilibrium Problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 101(2), pages 331-371, April.
  • Handle: RePEc:spr:mathme:v:101:y:2025:i:2:d:10.1007_s00186-025-00894-3
    DOI: 10.1007/s00186-025-00894-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-025-00894-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-025-00894-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dang Hieu, 2018. "An inertial-like proximal algorithm for equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(3), pages 399-415, December.
    2. Cholamjiak, Watcharaporn & Suparatulatorn, Raweerote, 2023. "Strong convergence of a modified extragradient algorithm to solve pseudomonotone equilibrium and application to classification of diabetes mellitus," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Yekini Shehu & Olaniyi S. Iyiola & Duong Viet Thong & Nguyen Thi Cam Van, 2021. "An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 213-242, April.
    4. Yonghong Yao & Abubakar Adamu & Yekini Shehu & Jen-Chih Yao, 2024. "Simple proximal-type algorithms for equilibrium problems," Journal of Global Optimization, Springer, vol. 89(4), pages 1069-1098, August.
    5. Pham Ky Anh & Trinh Ngoc Hai, 2019. "Novel self-adaptive algorithms for non-Lipschitz equilibrium problems with applications," Journal of Global Optimization, Springer, vol. 73(3), pages 637-657, March.
    6. Jun Yang & Hongwei Liu, 2020. "A self-adaptive method for pseudomonotone equilibrium problems and variational inequalities," Computational Optimization and Applications, Springer, vol. 75(2), pages 423-440, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yonghong Yao & Abubakar Adamu & Yekini Shehu & Jen-Chih Yao, 2024. "Simple proximal-type algorithms for equilibrium problems," Journal of Global Optimization, Springer, vol. 89(4), pages 1069-1098, August.
    2. Duong Viet Thong & Vu Tien Dung & Hoang Thi Thanh Tam, 2025. "A Self Adaptive Projected Gradient Method for Solving Non-Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 206(1), pages 1-27, July.
    3. Yekini Shehu & Olaniyi S. Iyiola & Duong Viet Thong & Nguyen Thi Cam Van, 2021. "An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 213-242, April.
    4. Sorin-Mihai Grad & Felipe Lara & Raúl Tintaya Marcavillaca, 2024. "Relaxed-Inertial Proximal Point Algorithms for Nonconvex Equilibrium Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2233-2262, December.
    5. Dawan Chumpungam & Panitarn Sarnmeta & Suthep Suantai, 2021. "A New Forward–Backward Algorithm with Line Searchand Inertial Techniques for Convex Minimization Problems with Applications," Mathematics, MDPI, vol. 9(13), pages 1-20, July.
    6. Yekini Shehu & Qiao-Li Dong & Lulu Liu & Jen-Chih Yao, 2023. "Alternated inertial subgradient extragradient method for equilibrium problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 1-30, April.
    7. Dawan Chumpungam & Panitarn Sarnmeta & Suthep Suantai, 2022. "An Accelerated Convex Optimization Algorithm with Line Search and Applications in Machine Learning," Mathematics, MDPI, vol. 10(9), pages 1-20, April.
    8. Suthep Suantai & Narin Petrot & Manatchanok Khonchaliew, 2021. "Inertial Extragradient Methods for Solving Split Equilibrium Problems," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    9. Jamilu Abubakar & Poom Kumam & Abdulkarim Hassan Ibrahim & Anantachai Padcharoen, 2020. "Relaxed Inertial Tseng’s Type Method for Solving the Inclusion Problem with Application to Image Restoration," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    10. Zhong-bao Wang & Xue Chen & Jiang Yi & Zhang-you Chen, 2022. "Inertial projection and contraction algorithms with larger step sizes for solving quasimonotone variational inequalities," Journal of Global Optimization, Springer, vol. 82(3), pages 499-522, March.
    11. Habib ur Rehman & Wiyada Kumam & Kamonrat Sombut, 2022. "Inertial Modification Using Self-Adaptive Subgradient Extragradient Techniques for Equilibrium Programming Applied to Variational Inequalities and Fixed-Point Problems," Mathematics, MDPI, vol. 10(10), pages 1-29, May.
    12. Duong Viet Thong & Vu Tien Dung & Pham Thi Huong Huyen & Hoang Thi Thanh Tam, 2024. "On Approximating Solutions to Non-monotone Variational Inequality Problems: An Approach Through the Modified Projection and Contraction Method," Networks and Spatial Economics, Springer, vol. 24(4), pages 789-818, December.
    13. Habib ur Rehman & Poom Kumam & Meshal Shutaywi & Nasser Aedh Alreshidi & Wiyada Kumam, 2020. "Inertial Optimization Based Two-Step Methods for Solving Equilibrium Problems with Applications in Variational Inequality Problems and Growth Control Equilibrium Models," Energies, MDPI, vol. 13(12), pages 1-28, June.
    14. Habib ur Rehman & Fouzia Amir & Jehad Alzabut & Mohammad Athar Azim, 2024. "An Inertial Subgradient Extragradient Method for Efficiently Solving Fixed-Point and Equilibrium Problems in Infinite Families of Demimetric Mappings," Mathematics, MDPI, vol. 13(1), pages 1-22, December.
    15. Lu-Chuan Ceng & Ching-Feng Wen & Yeong-Cheng Liou & Jen-Chih Yao, 2022. "On Strengthened Inertial-Type Subgradient Extragradient Rule with Adaptive Step Sizes for Variational Inequalities and Fixed Points of Asymptotically Nonexpansive Mappings," Mathematics, MDPI, vol. 10(6), pages 1-21, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:101:y:2025:i:2:d:10.1007_s00186-025-00894-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.