IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v101y2025i3d10.1007_s00186-025-00896-1.html
   My bibliography  Save this article

Strongly Convergent Golden Ratio Algorithms for Variational Inequalities

Author

Listed:
  • Yonghong Yao

    (Tiangong University
    China Medical University Hospital, China Medical University
    Kyung Hee University)

  • Abubakar Adamu

    (Near East University
    Chongqing Normal University)

  • Yekini Shehu

    (Zhejiang Normal University)

Abstract

In this paper, we design strongly convergent golden ratio algorithms to solve variational inequalities in Hilbert spaces. We give strong convergence results in both cases when the stepsizes are constant and when the step sizes are self-adaptively generated. Our proposed algorithms have the same feature of one evaluation of the proximal operator and one evaluation of the cost operator at each iteration, just like the weakly convergent golden ratio algorithm. We test our proposed algorithms with some standard numerical examples and make some numerical comparisons with other related algorithms on variational inequalities in the literature.

Suggested Citation

  • Yonghong Yao & Abubakar Adamu & Yekini Shehu, 2025. "Strongly Convergent Golden Ratio Algorithms for Variational Inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 101(3), pages 395-433, June.
  • Handle: RePEc:spr:mathme:v:101:y:2025:i:3:d:10.1007_s00186-025-00896-1
    DOI: 10.1007/s00186-025-00896-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-025-00896-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-025-00896-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rapeepan Kraikaew & Satit Saejung, 2014. "Strong Convergence of the Halpern Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 399-412, November.
    2. J. Preininger & P. T. Vuong, 2018. "On the convergence of the gradient projection method for convex optimal control problems with bang–bang solutions," Computational Optimization and Applications, Springer, vol. 70(1), pages 221-238, May.
    3. P. E. Maingé & M. L. Gobinddass, 2016. "Convergence of One-Step Projected Gradient Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 146-168, October.
    4. Pham Ky Anh & Trinh Ngoc Hai, 2021. "Dynamical system for solving bilevel variational inequalities," Journal of Global Optimization, Springer, vol. 80(4), pages 945-963, August.
    5. Jun Yang & Hongwei Liu, 2020. "A self-adaptive method for pseudomonotone equilibrium problems and variational inequalities," Computational Optimization and Applications, Springer, vol. 75(2), pages 423-440, March.
    6. Y. Censor & A. Gibali & S. Reich, 2011. "The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 318-335, February.
    7. Dang Hieu & Pham Ky Anh & Le Dung Muu, 2021. "Modified forward–backward splitting method for variational inclusions," 4OR, Springer, vol. 19(1), pages 127-151, March.
    8. Minglu Ye & Yiran He, 2015. "A double projection method for solving variational inequalities without monotonicity," Computational Optimization and Applications, Springer, vol. 60(1), pages 141-150, January.
    9. Chinedu Izuchukwu & Yekini Shehu & Jen-Chih Yao, 2022. "New inertial forward-backward type for variational inequalities with Quasi-monotonicity," Journal of Global Optimization, Springer, vol. 84(2), pages 441-464, October.
    10. Hongwei Liu & Jun Yang, 2020. "Weak convergence of iterative methods for solving quasimonotone variational inequalities," Computational Optimization and Applications, Springer, vol. 77(2), pages 491-508, November.
    11. M.A. Noor, 2003. "Extragradient Methods for Pseudomonotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 117(3), pages 475-488, June.
    12. Zhong-bao Wang & Xue Chen & Jiang Yi & Zhang-you Chen, 2022. "Inertial projection and contraction algorithms with larger step sizes for solving quasimonotone variational inequalities," Journal of Global Optimization, Springer, vol. 82(3), pages 499-522, March.
    13. Xiaokai Chang & Jianchao Bai, 2021. "A Projected Extrapolated Gradient Method with Larger Step Size for Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 602-627, August.
    14. Lu-Chuan Ceng & Nicolas Hadjisavvas & Ngai-Ching Wong, 2010. "Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems," Journal of Global Optimization, Springer, vol. 46(4), pages 635-646, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chinedu Izuchukwu & Yekini Shehu & Jen-Chih Yao, 2022. "New inertial forward-backward type for variational inequalities with Quasi-monotonicity," Journal of Global Optimization, Springer, vol. 84(2), pages 441-464, October.
    2. Duong Viet Thong, 2025. "Some New Conditions for Solving Variational Inequalities Without Monotonicity," Journal of Optimization Theory and Applications, Springer, vol. 206(2), pages 1-20, August.
    3. Timilehin O. Alakoya & Oluwatosin T. Mewomo & Yekini Shehu, 2022. "Strong convergence results for quasimonotone variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 249-279, April.
    4. Duong Viet Thong & Vu Tien Dung & Hoang Thi Thanh Tam, 2025. "A Self Adaptive Projected Gradient Method for Solving Non-Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 206(1), pages 1-27, July.
    5. Duong Viet Thong & Vu Tien Dung & Pham Thi Huong Huyen & Hoang Thi Thanh Tam, 2024. "On Approximating Solutions to Non-monotone Variational Inequality Problems: An Approach Through the Modified Projection and Contraction Method," Networks and Spatial Economics, Springer, vol. 24(4), pages 789-818, December.
    6. Duong Thong & Pham Anh & Vu Dung, 2025. "Relaxed Two-Step Inertial Tseng’s Extragradient Method for Nonmonotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 205(1), pages 1-27, April.
    7. V. A. Uzor & T. O. Alakoya & O. T. Mewomo & A. Gibali, 2023. "Solving quasimonotone and non-monotone variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(3), pages 461-498, December.
    8. Zhong-bao Wang & Xue Chen & Jiang Yi & Zhang-you Chen, 2022. "Inertial projection and contraction algorithms with larger step sizes for solving quasimonotone variational inequalities," Journal of Global Optimization, Springer, vol. 82(3), pages 499-522, March.
    9. Xin He & Nan-jing Huang & Xue-song Li, 2022. "Modified Projection Methods for Solving Multi-valued Variational Inequality without Monotonicity," Networks and Spatial Economics, Springer, vol. 22(2), pages 361-377, June.
    10. Bing Tan & Xiaolong Qin & Jen-Chih Yao, 2022. "Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems," Journal of Global Optimization, Springer, vol. 82(3), pages 523-557, March.
    11. Lu-Chuan Ceng & Xiaolong Qin & Yekini Shehu & Jen-Chih Yao, 2019. "Mildly Inertial Subgradient Extragradient Method for Variational Inequalities Involving an Asymptotically Nonexpansive and Finitely Many Nonexpansive Mappings," Mathematics, MDPI, vol. 7(10), pages 1-19, September.
    12. Lu-Chuan Ceng & Ching-Feng Wen & Yeong-Cheng Liou & Jen-Chih Yao, 2022. "On Strengthened Inertial-Type Subgradient Extragradient Rule with Adaptive Step Sizes for Variational Inequalities and Fixed Points of Asymptotically Nonexpansive Mappings," Mathematics, MDPI, vol. 10(6), pages 1-21, March.
    13. Ying Liu & Hang Kong, 2019. "Strong convergence theorems for relatively nonexpansive mappings and Lipschitz-continuous monotone mappings in Banach spaces," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(4), pages 1049-1065, December.
    14. Jamilu Abubakar & Poom Kumam & Habib ur Rehman & Abdulkarim Hassan Ibrahim, 2020. "Inertial Iterative Schemes with Variable Step Sizes for Variational Inequality Problem Involving Pseudomonotone Operator," Mathematics, MDPI, vol. 8(4), pages 1-25, April.
    15. Chinedu Izuchukwu & Yekini Shehu, 2021. "New Inertial Projection Methods for Solving Multivalued Variational Inequality Problems Beyond Monotonicity," Networks and Spatial Economics, Springer, vol. 21(2), pages 291-323, June.
    16. Shanshan Xu & Songxiao Li, 2025. "A Strongly Convergent Alternated Inertial Algorithm for Solving Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 206(2), pages 1-35, August.
    17. Gang Cai & Aviv Gibali & Olaniyi S. Iyiola & Yekini Shehu, 2018. "A New Double-Projection Method for Solving Variational Inequalities in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 219-239, July.
    18. Lu-Chuan Ceng & Yekini Shehu & Jen-Chih Yao, 2022. "Modified Mann Subgradient-like Extragradient Rules for Variational Inequalities and Common Fixed Points Involving Asymptotically Nonexpansive Mappings," Mathematics, MDPI, vol. 10(5), pages 1-20, February.
    19. Tingting Cai & Dongmin Yu & Huanan Liu & Fengkai Gao, 2022. "RETRACTED: Computational Analysis of Variational Inequalities Using Mean Extra-Gradient Approach," Mathematics, MDPI, vol. 10(13), pages 1-14, July.
    20. Hongwei Liu & Jun Yang, 2020. "Weak convergence of iterative methods for solving quasimonotone variational inequalities," Computational Optimization and Applications, Springer, vol. 77(2), pages 491-508, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:101:y:2025:i:3:d:10.1007_s00186-025-00896-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.