IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v27y2021i3d10.1007_s10985-021-09521-9.html
   My bibliography  Save this article

Regression analysis of current status data with latent variables

Author

Listed:
  • Chunjie Wang

    (Changchun University of Technology)

  • Bo Zhao

    (Changchun University of Technology
    Heilongjiang Bayi Agricultural University)

  • Linlin Luo

    (Changchun University of Technology)

  • Xinyuan Song

    (The Chinese University of Hong Kong)

Abstract

Current status data occur in many fields including demographical, epidemiological, financial, medical, and sociological studies. We consider the regression analysis of current status data with latent variables. The proposed model consists of a factor analytic model for characterizing latent variables through their multiple surrogates and an additive hazard model for examining potential covariate effects on the hazards of interest in the presence of current status data. We develop a borrow-strength estimation procedure that incorporates the expectation–maximization algorithm and correlated estimating equations. The consistency and asymptotic normality of the proposed estimators are established. A simulation study is conducted to evaluate the finite sample performance of the proposed method. A real-life study on the chronic kidney disease of type 2 diabetic patients is presented.

Suggested Citation

  • Chunjie Wang & Bo Zhao & Linlin Luo & Xinyuan Song, 2021. "Regression analysis of current status data with latent variables," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 413-436, July.
  • Handle: RePEc:spr:lifeda:v:27:y:2021:i:3:d:10.1007_s10985-021-09521-9
    DOI: 10.1007/s10985-021-09521-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-021-09521-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-021-09521-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. J.‐Q. Shi & S.‐Y. Lee, 2000. "Latent variable models with mixed continuous and polytomous data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 77-87.
    2. Deng Pan & Haijin He & Xinyuan Song & Liuquan Sun, 2015. "Regression Analysis of Additive Hazards Model With Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1148-1159, September.
    3. Amemiya, Yasuo & Fuller, Wayne A. & Pantula, Sastry G., 1987. "The asymptotic distributions of some estimators for a factor analysis model," Journal of Multivariate Analysis, Elsevier, vol. 22(1), pages 51-64, June.
    4. J. Sun, 1999. "A nonparametric test for current status data with unequal censoring," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 243-250.
    5. Sik-Yum Lee & Xin-Yuan Song, 2004. "Maximum Likelihood Analysis of a General Latent Variable Model with Hierarchically Mixed Data," Biometrics, The International Biometric Society, vol. 60(3), pages 624-636, September.
    6. Ling Ma & Tao Hu & Jianguo Sun, 2015. "Sieve maximum likelihood regression analysis of dependent current status data," Biometrika, Biometrika Trust, vol. 102(3), pages 731-738.
    7. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sik-Yum Lee & Xin-Yuan Song, 2007. "A Unified Maximum Likelihood Approach for Analyzing Structural Equation Models With Missing Nonstandard Data," Sociological Methods & Research, , vol. 35(3), pages 352-381, February.
    2. Lee, Sik-Yum & Song, Xin-Yuan, 2008. "On Bayesian estimation and model comparison of an integrated structural equation model," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4814-4827, June.
    3. Yang, Qi & He, Haijin & Lu, Bin & Song, Xinyuan, 2022. "Mixture additive hazards cure model with latent variables: Application to corporate default data," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    4. Yuqing Ma & Peijie Wang & Jianguo Sun, 2023. "Estimation of complier causal treatment effects with informatively interval-censored failure time data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(6), pages 1039-1062, December.
    5. Mengzhu Yu & Mingyue Du, 2022. "Regression Analysis of Multivariate Interval-Censored Failure Time Data under Transformation Model with Informative Censoring," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    6. Tianyi Lu & Shuwei Li & Liuquan Sun, 2023. "Combined estimating equation approaches for the additive hazards model with left-truncated and interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 672-697, July.
    7. Celine Marielle Laffont & Marc Vandemeulebroecke & Didier Concordet, 2014. "Multivariate Analysis of Longitudinal Ordinal Data With Mixed Effects Models, With Application to Clinical Outcomes in Osteoarthritis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 955-966, September.
    8. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    9. Sik-Yum Lee & Liang Xu, 2003. "Case-Deletion Diagnostics for Factor Analysis Models With Continuous and Ordinal Categorical Data," Sociological Methods & Research, , vol. 31(3), pages 389-419, February.
    10. Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
    11. Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Jun 2024.
    12. Bai, Jushan, 2024. "Likelihood approach to dynamic panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 240(1).
    13. Congran Yu & Wenwen Guo & Xinyuan Song & Hengjian Cui, 2023. "Feature screening with latent responses," Biometrics, The International Biometric Society, vol. 79(2), pages 878-890, June.
    14. An, Xinming & Bentler, Peter M., 2012. "Efficient direct sampling MCEM algorithm for latent variable models with binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 231-244.
    15. Mengyue Zhang & Shishun Zhao & Tao Hu & Da Xu & Jianguo Sun, 2023. "Regression Analysis of Dependent Current Status Data with Left Truncation," Mathematics, MDPI, vol. 11(16), pages 1-13, August.
    16. Pavithra Hariharan & P. G. Sankaran, 2024. "Semiparametric regression modelling of current status competing risks data: a Bayesian approach," Computational Statistics, Springer, vol. 39(4), pages 2083-2108, June.
    17. Sajad Rezaei & Muslim Amin & Halimin Herjanto, 2024. "Pay-per-click (PPC) advertising and continuous banking service intentions," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 29(4), pages 1542-1558, December.
    18. Feng, Xiangnan & Lu, Bin & Song, Xinyuan & Ma, Shuang, 2019. "Financial literacy and household finances: A Bayesian two-part latent variable modeling approach," Journal of Empirical Finance, Elsevier, vol. 51(C), pages 119-137.
    19. Li, Shuwei & Hu, Tao & Wang, Peijie & Sun, Jianguo, 2017. "Regression analysis of current status data in the presence of dependent censoring with applications to tumorigenicity experiments," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 75-86.
    20. Li, Yan & Gao, Zhigen & Huang, Wei & Guo, Jianhua, 2023. "Matrix-variate data analysis by two-way factor model with replicated observations," Statistics & Probability Letters, Elsevier, vol. 202(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:27:y:2021:i:3:d:10.1007_s10985-021-09521-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.