IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v21y2018i1d10.1007_s10951-016-0500-2.html
   My bibliography  Save this article

Energy-efficient scheduling and routing via randomized rounding

Author

Listed:
  • Evripidis Bampis

    (Sorbonne Universités, UPMC Univ Paris 06)

  • Alexander Kononov

    (Sobolev Institute of Mathematics)

  • Dimitrios Letsios

    (Sorbonne Universités, UPMC Univ Paris 06
    Univ. Nice Sophia Antipolis)

  • Giorgio Lucarelli

    (Sorbonne Universités, UPMC Univ Paris 06
    Grenoble INP)

  • Maxim Sviridenko

    (Yahoo Labs)

Abstract

We propose a unifying framework based on configuration linear programs and randomized rounding, for different energy optimization problems in the dynamic speed-scaling setting. We apply our framework to various scheduling and routing problems in heterogeneous computing and networking environments. We first consider the energy minimization problem of scheduling a set of jobs on a set of parallel speed scalable processors in a fully heterogeneous setting. For both the preemptive-nonmigratory and the preemptive-migratory variants, our approach allows us to obtain solutions of almost the same quality as for the homogeneous environment. By exploiting the result for the preemptive-nonmigratory variant, we are able to improve the best known approximation ratio for the single processor non-preemptive problem. Furthermore, we show that our approach allows to obtain a constant-factor approximation algorithm for the power-aware preemptive job shop scheduling problem. Finally, we consider the min-power routing problem where we are given a network modeled by an undirected graph and a set of uniform demands that have to be routed on integral routes from their sources to their destinations so that the energy consumption is minimized. We improve the best known approximation ratio for this problem.

Suggested Citation

  • Evripidis Bampis & Alexander Kononov & Dimitrios Letsios & Giorgio Lucarelli & Maxim Sviridenko, 2018. "Energy-efficient scheduling and routing via randomized rounding," Journal of Scheduling, Springer, vol. 21(1), pages 35-51, February.
  • Handle: RePEc:spr:jsched:v:21:y:2018:i:1:d:10.1007_s10951-016-0500-2
    DOI: 10.1007/s10951-016-0500-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-016-0500-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-016-0500-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco E. T. Gerards & Johann L. Hurink & Philip K. F. Hölzenspies, 2016. "A survey of offline algorithms for energy minimization under deadline constraints," Journal of Scheduling, Springer, vol. 19(1), pages 3-19, February.
    2. Nan Zhang & Hong He & Shao Zhang & Xiao Jiang & Zi Xia & Feng Huang, 2012. "Influence of Reservoir Operation in the Upper Reaches of the Yangtze River (China) on the Inflow and Outflow Regime of the TGR-based on the Improved SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 691-705, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Kononov & Yulia Zakharova, 2022. "Speed scaling scheduling of multiprocessor jobs with energy constraint and makespan criterion," Journal of Global Optimization, Springer, vol. 83(3), pages 539-564, July.
    2. Alexander Kononov & Yulia Kovalenko, 2020. "Approximation algorithms for energy-efficient scheduling of parallel jobs," Journal of Scheduling, Springer, vol. 23(6), pages 693-709, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei Zhao & Xiangyu Tang & Jialiang Tang & Chao Wang, 2013. "Assessing Water Quality of Three Gorges Reservoir, China, Over a Five-Year Period From 2006 to 2011," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4545-4558, October.
    2. Alexander Kononov & Yulia Zakharova, 2022. "Speed scaling scheduling of multiprocessor jobs with energy constraint and makespan criterion," Journal of Global Optimization, Springer, vol. 83(3), pages 539-564, July.
    3. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich & Bernhard Primas, 2018. "Models and algorithms for energy-efficient scheduling with immediate start of jobs," Journal of Scheduling, Springer, vol. 21(5), pages 505-516, October.
    4. Yang Peng & Changming Ji & Roy Gu, 2014. "A Multi-Objective Optimization Model for Coordinated Regulation of Flow and Sediment in Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4019-4033, September.
    5. Xiaowen Ding & Lin Liu, 2019. "Long-Term Effects of Anthropogenic Factors on Nonpoint Source Pollution in the Upper Reaches of the Yangtze River," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    6. Shi, Yingyuan & Xu, Gaohong & Wang, Yonggui & Engel, Bernard A. & Peng, Hong & Zhang, Wanshun & Cheng, Meiling & Dai, Minglong, 2017. "Modelling hydrology and water quality processes in the Pengxi River basin of the Three Gorges Reservoir using the soil and water assessment tool," Agricultural Water Management, Elsevier, vol. 182(C), pages 24-38.
    7. Alexander Kononov & Yulia Kovalenko, 2020. "Approximation algorithms for energy-efficient scheduling of parallel jobs," Journal of Scheduling, Springer, vol. 23(6), pages 693-709, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:21:y:2018:i:1:d:10.1007_s10951-016-0500-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.