IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i2d10.1007_s10959-023-01302-4.html
   My bibliography  Save this article

Invariant Measures for the Nonlinear Stochastic Heat Equation with No Drift Term

Author

Listed:
  • Le Chen

    (Auburn University)

  • Nicholas Eisenberg

    (Auburn University)

Abstract

This paper deals with the long-term behavior of the solution to the nonlinear stochastic heat equation $$\frac{\partial u}{\partial t} - \frac{1}{2}\Delta u = b(u){\dot{W}}$$ ∂ u ∂ t - 1 2 Δ u = b ( u ) W ˙ , where b is assumed to be a globally Lipschitz continuous function and the noise $${\dot{W}}$$ W ˙ is a centered and spatially homogeneous Gaussian noise that is white in time. We identify a set of nearly optimal conditions on the initial data, the correlation measure of the noise, and the weight function $$\rho $$ ρ , which together guarantee the existence of an invariant measure in the weighted space $$L^2_\rho ({\mathbb {R}}^d)$$ L ρ 2 ( R d ) . In particular, our result covers the parabolic Anderson model (i.e., the case when $$b(u) = \lambda u$$ b ( u ) = λ u ) starting from the Dirac delta measure.

Suggested Citation

  • Le Chen & Nicholas Eisenberg, 2024. "Invariant Measures for the Nonlinear Stochastic Heat Equation with No Drift Term," Journal of Theoretical Probability, Springer, vol. 37(2), pages 1357-1396, June.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:2:d:10.1007_s10959-023-01302-4
    DOI: 10.1007/s10959-023-01302-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-023-01302-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-023-01302-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peszat, Szymon & Zabczyk, Jerzy, 1997. "Stochastic evolution equations with a spatially homogeneous Wiener process," Stochastic Processes and their Applications, Elsevier, vol. 72(2), pages 187-204, December.
    2. Raluca M. Balan & Le Chen, 2018. "Parabolic Anderson Model with Space-Time Homogeneous Gaussian Noise and Rough Initial Condition," Journal of Theoretical Probability, Springer, vol. 31(4), pages 2216-2265, December.
    3. Assing, Sigurd & Manthey, Ralf, 2003. "Invariant measures for stochastic heat equations with unbounded coefficients," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 237-256, February.
    4. Brzezniak, Zdzislaw & Gatarek, Dariusz, 1999. "Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 187-225, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oleksandr Misiats & Oleksandr Stanzhytskyi & Nung Kwan Yip, 2016. "Existence and Uniqueness of Invariant Measures for Stochastic Reaction–Diffusion Equations in Unbounded Domains," Journal of Theoretical Probability, Springer, vol. 29(3), pages 996-1026, September.
    2. Yue Li & Shijie Shang & Jianliang Zhai, 2024. "Large Deviation Principle for Stochastic Reaction–Diffusion Equations with Superlinear Drift on $$\mathbb {R}$$ R Driven by Space–Time White Noise," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3496-3539, November.
    3. Márquez-Carreras, D. & Mellouk, M. & Sarrà, M., 2001. "On stochastic partial differential equations with spatially correlated noise: smoothness of the law," Stochastic Processes and their Applications, Elsevier, vol. 93(2), pages 269-284, June.
    4. Balan, Raluca M. & Jolis, Maria & Quer-Sardanyons, Lluís, 2016. "SPDEs with rough noise in space: Hölder continuity of the solution," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 310-316.
    5. Basson, Arnaud, 2008. "Spatially homogeneous solutions of 3D stochastic Navier-Stokes equations and local energy inequality," Stochastic Processes and their Applications, Elsevier, vol. 118(3), pages 417-451, March.
    6. Dan Han & Stanislav Molchanov & Boris Vainberg, 2025. "Spectral Analysis of Lattice Schrödinger-Type Operators Associated with the Nonstationary Anderson Model and Intermittency," Mathematics, MDPI, vol. 13(5), pages 1-21, February.
    7. Martin Ondreját & Mark Veraar, 2014. "Weak Characterizations of Stochastic Integrability and Dudley’s Theorem in Infinite Dimensions," Journal of Theoretical Probability, Springer, vol. 27(4), pages 1350-1374, December.
    8. C. Cardon-Weber & A. Millet, 2004. "On Strongly Petrovskii's Parabolic SPDEs in Arbitrary Dimension and Application to the Stochastic Cahn–Hilliard Equation," Journal of Theoretical Probability, Springer, vol. 17(1), pages 1-49, January.
    9. Junfeng Liu, 2023. "Moment Bounds for a Generalized Anderson Model with Gaussian Noise Rough in Space," Journal of Theoretical Probability, Springer, vol. 36(1), pages 167-200, March.
    10. Rama Cont, 1999. "Modeling interest rate dynamics: an infinite-dimensional approach," Papers cond-mat/9902018, arXiv.org.
    11. Duncan, T.E. & Maslowski, B. & Pasik-Duncan, B., 2005. "Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise," Stochastic Processes and their Applications, Elsevier, vol. 115(8), pages 1357-1383, August.
    12. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.
    13. Bojdecki, Tomasz & Jakubowski, Jacek, 1999. "Invariant measures for generalized Langevin equations in conuclear space," Stochastic Processes and their Applications, Elsevier, vol. 84(1), pages 1-24, November.
    14. Ruinan Li & Ran Wang & Beibei Zhang, 2024. "A Large Deviation Principle for the Stochastic Heat Equation with General Rough Noise," Journal of Theoretical Probability, Springer, vol. 37(1), pages 251-306, March.
    15. Lund, Adam & Hansen, Niels Richard, 2019. "Sparse network estimation for dynamical spatio-temporal array models," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    16. Tessitore, Gianmario & Zabczyk, Jerzy, 1998. "Strict positivity for stochastic heat equations," Stochastic Processes and their Applications, Elsevier, vol. 77(1), pages 83-98, September.
    17. Xiangfeng Yang & Kai Yao, 2017. "Uncertain partial differential equation with application to heat conduction," Fuzzy Optimization and Decision Making, Springer, vol. 16(3), pages 379-403, September.
    18. Fannjiang, Albert & Komorowski, Tomasz & Peszat, Szymon, 2002. "Lagrangian dynamics for a passive tracer in a class of Gaussian Markovian flows," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 171-198, February.
    19. Chen, Le & Dalang, Robert C., 2015. "Moment bounds and asymptotics for the stochastic wave equation," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1605-1628.
    20. Dhariwal, Gaurav & Jüngel, Ansgar & Zamponi, Nicola, 2019. "Global martingale solutions for a stochastic population cross-diffusion system," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3792-3820.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:2:d:10.1007_s10959-023-01302-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.