IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i1d10.1007_s10959-023-01288-z.html
   My bibliography  Save this article

General Mean Reflected Backward Stochastic Differential Equations

Author

Listed:
  • Ying Hu

    (Univ. Rennes, CNRS, IRMAR-UMR 6625)

  • Remi Moreau

    (Univ. Rennes, CNRS, IRMAR-UMR 6625)

  • Falei Wang

    (Shandong University)

Abstract

The present paper is devoted to the study of backward stochastic differential equations (BSDEs) with mean reflection formulated by Briand et al. (Ann Appl Probab 28(1):482–510, 2018). We investigate the solvability of a generalized mean reflected BSDE, whose driver also depends on the distribution of solution term Y. Using a fixed-point argument, BMO martingale theory and the $$\theta $$ θ -method, we establish existence and uniqueness results for such BSDEs in several typical situations, including the case where the driver is quadratic with bounded or unbounded terminal condition.

Suggested Citation

  • Ying Hu & Remi Moreau & Falei Wang, 2024. "General Mean Reflected Backward Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 37(1), pages 877-904, March.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:1:d:10.1007_s10959-023-01288-z
    DOI: 10.1007/s10959-023-01288-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-023-01288-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-023-01288-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Briand, Philippe & Cardaliaguet, Pierre & Chaudru de Raynal, Paul-Éric & Hu, Ying, 2020. "Forward and backward stochastic differential equations with normal constraints in law," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7021-7097.
    2. Briand, Philippe & Elie, Romuald, 2013. "A simple constructive approach to quadratic BSDEs with or without delay," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 2921-2939.
    3. Briand, Philippe & Hibon, Hélène, 2021. "Particles Systems for mean reflected BSDEs," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 253-275.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Yin & Li, Ruinan, 2021. "Transportation cost inequality for backward stochastic differential equations with mean reflection," Statistics & Probability Letters, Elsevier, vol. 177(C).
    2. Cui, Fengfeng & Zhao, Weidong, 2023. "Well-posedness of mean reflected BSDEs with non-Lipschitz coefficients," Statistics & Probability Letters, Elsevier, vol. 193(C).
    3. Monia Karouf, 2019. "Reflected and Doubly Reflected Backward Stochastic Differential Equations with Time-Delayed Generators," Journal of Theoretical Probability, Springer, vol. 32(1), pages 216-248, March.
    4. Li, Hanwu, 2024. "Backward stochastic differential equations with double mean reflections," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    5. Ying Hu & Gechun Liang & Shanjian Tang, 2018. "Systems of ergodic BSDEs arising in regime switching forward performance processes," Papers 1807.01816, arXiv.org, revised Jun 2020.
    6. Jackson, Joe & Žitković, Gordan, 2022. "A characterization of solutions of quadratic BSDEs and a new approach to existence," Stochastic Processes and their Applications, Elsevier, vol. 147(C), pages 210-225.
    7. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    8. Ludovic Tangpi & Xuchen Zhou, 2022. "Optimal Investment in a Large Population of Competitive and Heterogeneous Agents," Papers 2202.11314, arXiv.org, revised Feb 2023.
    9. Hernández-Santibáñez, Nicolás, 2024. "Principal-Multiagents problem under equivalent changes of measure: General study and an existence result," Stochastic Processes and their Applications, Elsevier, vol. 177(C).
    10. Fan, Shengjun & Hu, Ying, 2021. "Well-posedness of scalar BSDEs with sub-quadratic generators and related PDEs," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 21-50.
    11. Martin Herdegen & Johannes Muhle-Karbe & Dylan Possamai, 2019. "Equilibrium Asset Pricing with Transaction Costs," Papers 1901.10989, arXiv.org, revised Sep 2020.
    12. Dmitry Kramkov & Sergio Pulido, 2016. "Stability and analytic expansions of local solutions of systems of quadratic BSDEs with applications to a price impact model," Post-Print hal-01181147, HAL.
    13. Kim Weston & Gordan Žitković, 2020. "An incomplete equilibrium with a stochastic annuity," Finance and Stochastics, Springer, vol. 24(2), pages 359-382, April.
    14. Nam, Kihun, 2021. "Locally Lipschitz BSDE driven by a continuous martingale a path-derivative approach," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 376-411.
    15. Geiss, Stefan & Ylinen, Juha, 2020. "Weighted bounded mean oscillation applied to backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3711-3752.
    16. Alessandro Prosperi, 2022. "A partial stochastic equilibrium model and its limiting behaviour," Papers 2211.17231, arXiv.org.
    17. Frei, Christoph, 2014. "Splitting multidimensional BSDEs and finding local equilibria," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2654-2671.
    18. Peng Luo & Alexander Schied & Xiaole Xue, 2024. "The perturbation method applied to a robust optimization problem with constraint," Mathematics and Financial Economics, Springer, volume 18, number 4, September.
    19. Daniel Krv{s}ek & Dylan Possamai, 2023. "Randomisation with moral hazard: a path to existence of optimal contracts," Papers 2311.13278, arXiv.org.
    20. Dmitry Kramkov & Sergio Pulido, 2014. "Stability and analytic expansions of local solutions of systems of quadratic BSDEs with applications to a price impact model," Papers 1410.6144, arXiv.org, revised Aug 2016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:1:d:10.1007_s10959-023-01288-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.