IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v188y2025ics0304414925001103.html
   My bibliography  Save this article

A propagation of chaos result for weakly interacting nonlinear Snell envelopes

Author

Listed:
  • Djehiche, Boualem
  • Dumitrescu, Roxana
  • Zeng, Jia

Abstract

In this article, we establish a propagation of chaos result for weakly interacting nonlinear Snell envelopes which converge to a class of mean-field reflected backward stochastic differential equations (BSDEs) with jumps and right-continuous and left-limited obstacle, where the mean-field interaction in terms of the distribution of the Y-component of the solution enters both the driver and the lower obstacle. Under mild Lipschitz and integrability conditions on the coefficients, we prove existence and uniqueness of the solution to both the mean-field reflected BSDEs with jumps and the corresponding system of weakly interacting particles by using a new approach relying on the characterization of the solution of a mean-field reflected BSDE in terms of a nonlinear optimal stopping problem of mean-field type. We then provide a propagation of chaos result for the whole solution (Y,Z,U,K), which requires new technical results due to the dependence of the obstacle on the solution and the presence of jumps. In particular, we obtain a new law of large number type result for right-continuous and left-limited processes.

Suggested Citation

  • Djehiche, Boualem & Dumitrescu, Roxana & Zeng, Jia, 2025. "A propagation of chaos result for weakly interacting nonlinear Snell envelopes," Stochastic Processes and their Applications, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:spapps:v:188:y:2025:i:c:s0304414925001103
    DOI: 10.1016/j.spa.2025.104669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414925001103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2025.104669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:188:y:2025:i:c:s0304414925001103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.