IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v206y2025i3d10.1007_s10957-025-02749-7.html
   My bibliography  Save this article

Stochastic Bregman Subgradient Methods for Nonsmooth Nonconvex Optimization Problems

Author

Listed:
  • Kuangyu Ding

    (National University of Singapore)

  • Kim-Chuan Toh

    (National University of Singapore)

Abstract

This paper focuses on the problem of minimizing a locally Lipschitz continuous function. Motivated by the effectiveness of Bregman gradient methods in training nonsmooth deep neural networks and the recent progress in stochastic subgradient methods for nonsmooth nonconvex optimization problems [11, 12, 58], we investigate the long-term behavior of stochastic Bregman subgradient methods in such context, especially when the objective function lacks Clarke regularity. We begin by exploring a general framework for Bregman-type methods, establishing their convergence by a differential inclusion approach. For practical applications, we develop a stochastic Bregman subgradient method that allows the subproblems to be solved inexactly. Furthermore, we demonstrate how a single timescale momentum can be integrated into the Bregman subgradient method with slight modifications to the momentum update. Additionally, we introduce a Bregman proximal subgradient method for solving composite optimization problems possibly with constraints, whose convergence can be guaranteed based on the general framework. Numerical experiments on training nonsmooth neural networks are conducted to validate the effectiveness of our proposed methods.

Suggested Citation

  • Kuangyu Ding & Kim-Chuan Toh, 2025. "Stochastic Bregman Subgradient Methods for Nonsmooth Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 206(3), pages 1-36, September.
  • Handle: RePEc:spr:joptap:v:206:y:2025:i:3:d:10.1007_s10957-025-02749-7
    DOI: 10.1007/s10957-025-02749-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02749-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02749-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Haihao Lu & Robert M. Freund & Yurii Nesterov, 2018. "Relatively smooth convex optimization by first-order methods, and applications," LIDAM Reprints CORE 2965, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Michel Benaim & Josef Hofbauer & Sylvain Sorin, 2005. "Stochastic Approximations and Differential Inclusions II: Applications," Levine's Bibliography 784828000000000098, UCLA Department of Economics.
    3. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2005. "Stochastic Approximations and Differential Inclusions; Part II: Applications," Working Papers hal-00242974, HAL.
    4. Filip Hanzely & Peter Richtárik, 2021. "Fastest rates for stochastic mirror descent methods," Computational Optimization and Applications, Springer, vol. 79(3), pages 717-766, July.
    5. Tam Le, 2024. "Nonsmooth Nonconvex Stochastic Heavy Ball," Journal of Optimization Theory and Applications, Springer, vol. 201(2), pages 699-719, May.
    6. Hong T. M. Chu & Ling Liang & Kim-Chuan Toh & Lei Yang, 2023. "An efficient implementable inexact entropic proximal point algorithm for a class of linear programming problems," Computational Optimization and Applications, Springer, vol. 85(1), pages 107-146, May.
    7. Shota Takahashi & Akiko Takeda, 2025. "Approximate bregman proximal gradient algorithm for relatively smooth nonconvex optimization," Computational Optimization and Applications, Springer, vol. 90(1), pages 227-256, January.
    8. Heinz H. Bauschke & Jérôme Bolte & Marc Teboulle, 2017. "A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 330-348, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin Liu & Sam Davanloo Tajbakhsh, 2023. "Stochastic Composition Optimization of Functions Without Lipschitz Continuous Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 239-289, July.
    2. Pourya Behmandpoor & Puya Latafat & Andreas Themelis & Marc Moonen & Panagiotis Patrinos, 2024. "SPIRAL: a superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization," Computational Optimization and Applications, Springer, vol. 88(1), pages 71-106, May.
    3. Giacomo Lanzani, 2025. "Dynamic Concern for Misspecification," Econometrica, Econometric Society, vol. 93(4), pages 1333-1370, July.
    4. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    5. Akimoto, Youhei & Auger, Anne & Hansen, Nikolaus, 2022. "An ODE method to prove the geometric convergence of adaptive stochastic algorithms," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 269-307.
    6. Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022. "Nonsmooth Implicit Differentiation for Machine Learning and Optimization," TSE Working Papers 22-1314, Toulouse School of Economics (TSE).
    7. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    8. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2006. "Stochastic Approximations and Differential Inclusions, Part II: Applications," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 673-695, November.
    9. Emanuel Laude & Peter Ochs & Daniel Cremers, 2020. "Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 724-761, March.
    10. Vinayaka G. Yaji & Shalabh Bhatnagar, 2020. "Stochastic Recursive Inclusions in Two Timescales with Nonadditive Iterate-Dependent Markov Noise," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1405-1444, November.
    11. Swenson, Brian & Murray, Ryan & Kar, Soummya, 2020. "Regular potential games," Games and Economic Behavior, Elsevier, vol. 124(C), pages 432-453.
    12. Bervoets, Sebastian & Faure, Mathieu, 2020. "Convergence in games with continua of equilibria," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 25-30.
    13. Bervoets, Sebastian & Faure, Mathieu, 2019. "Stability in games with continua of equilibria," Journal of Economic Theory, Elsevier, vol. 179(C), pages 131-162.
    14. Radu-Alexandru Dragomir & Alexandre d’Aspremont & Jérôme Bolte, 2021. "Quartic First-Order Methods for Low-Rank Minimization," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 341-363, May.
    15. Andrés Contreras & Juan Peypouquet, 2019. "Asymptotic Equivalence of Evolution Equations Governed by Cocoercive Operators and Their Forward Discretizations," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 30-48, July.
    16. Michel Benaïm & Mathieu Faure, 2013. "Consistency of Vanishingly Smooth Fictitious Play," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 437-450, August.
    17. Michel Benaim & Olivier Raimond, 2007. "Simulated Annealing, Vertex-Reinforced Random Walks and Learning in Games," Levine's Bibliography 122247000000001702, UCLA Department of Economics.
    18. Josef Hofbauer & Sylvain Sorin & Yannick Viossat, 2009. "Time Average Replicator and Best-Reply Dynamics," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 263-269, May.
    19. Esponda, Ignacio & Pouzo, Demian & Yamamoto, Yuichi, 2021. "Asymptotic behavior of Bayesian learners with misspecified models," Journal of Economic Theory, Elsevier, vol. 195(C).
    20. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:206:y:2025:i:3:d:10.1007_s10957-025-02749-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.