IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v199y2023i2d10.1007_s10957-023-02303-3.html
   My bibliography  Save this article

A Sweeping Gradient Method for Ordinary Differential Equations with Events

Author

Listed:
  • Benjamin W. L. Margolis

    (NASA Ames Research Center)

Abstract

In this paper, we use the calculus of variations to derive a sensitivity analysis for ordinary differential equations with events. This sweeping gradient method (SGM) requires a forward sweep to evaluate the original model and a backwards sweep of the adjoint to compute the sensitivity. The method is applied to canonical optimal control problems with numerical examples, including the sampled linear quadratic regulator and the optimal time-switching and state-switching for minimum-time transfer of the double integrator. We show that the application of the SGM for these examples matches the gradient determined analytically. Numerical examples are produced using gradient-based optimization algorithms. The emphasis of this work is on modeling considerations for the effective application of this method.

Suggested Citation

  • Benjamin W. L. Margolis, 2023. "A Sweeping Gradient Method for Ordinary Differential Equations with Events," Journal of Optimization Theory and Applications, Springer, vol. 199(2), pages 600-638, November.
  • Handle: RePEc:spr:joptap:v:199:y:2023:i:2:d:10.1007_s10957-023-02303-3
    DOI: 10.1007/s10957-023-02303-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02303-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02303-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregory Lantoine & Ryan P. Russell, 2012. "A Hybrid Differential Dynamic Programming Algorithm for Constrained Optimal Control Problems. Part 1: Theory," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 382-417, August.
    2. Gregory Lantoine & Ryan P. Russell, 2012. "A Hybrid Differential Dynamic Programming Algorithm for Constrained Optimal Control Problems. Part 2: Application," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 418-442, August.
    3. R. Griesse & A. Walther, 2004. "Evaluating Gradients in Optimal Control: Continuous Adjoints Versus Automatic Differentiation," Journal of Optimization Theory and Applications, Springer, vol. 122(1), pages 63-86, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Ottesen & Ryan P. Russell, 2021. "Unconstrained Direct Optimization of Spacecraft Trajectories Using Many Embedded Lambert Problems," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 634-674, December.
    2. Joris T. Olympio, 2013. "A Continuous Implementation of a Second-Variation Optimal Control Method for Space Trajectory Problems," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 687-716, September.
    3. Zhang, Yingbo & Li, Hangxin & Wang, Shengwei, 2024. "Life-cycle optimal design and energy benefits of centralized cooling systems for data centers concerning progressive loading," Renewable Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:199:y:2023:i:2:d:10.1007_s10957-023-02303-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.