IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v176y2018i2d10.1007_s10957-017-1211-3.html
   My bibliography  Save this article

Linear Convergence Rates for Variants of the Alternating Direction Method of Multipliers in Smooth Cases

Author

Listed:
  • Pauline Tan

    (Université Paris Saclay)

Abstract

In the present paper, we propose a novel convergence analysis of the alternating direction method of multipliers, based on its equivalence with the overrelaxed primal–dual hybrid gradient algorithm. We consider the smooth case, where the objective function can be decomposed into one differentiable with Lipschitz continuous gradient part and one strongly convex part. Under these hypotheses, a convergence proof with an optimal parameter choice is given for the primal–dual method, which leads to convergence results for the alternating direction method of multipliers. An accelerated variant of the latter, based on a parameter relaxation, is also proposed, which is shown to converge linearly with same asymptotic rate as the primal–dual algorithm.

Suggested Citation

  • Pauline Tan, 2018. "Linear Convergence Rates for Variants of the Alternating Direction Method of Multipliers in Smooth Cases," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 377-398, February.
  • Handle: RePEc:spr:joptap:v:176:y:2018:i:2:d:10.1007_s10957-017-1211-3
    DOI: 10.1007/s10957-017-1211-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1211-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1211-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Damek Davis & Wotao Yin, 2017. "Faster Convergence Rates of Relaxed Peaceman-Rachford and ADMM Under Regularity Assumptions," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 783-805, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    2. Min Li & Zhongming Wu, 2019. "Convergence Analysis of the Generalized Splitting Methods for a Class of Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 535-565, November.
    3. Hedy Attouch & Zaki Chbani & Jalal Fadili & Hassan Riahi, 2022. "Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 704-736, June.
    4. Chee-Khian Sim, 2023. "Convergence Rates for the Relaxed Peaceman-Rachford Splitting Method on a Monotone Inclusion Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 298-323, January.
    5. Zamani, Moslem & Abbaszadehpeivasti, Hadi & de Klerk, Etienne, 2023. "The exact worst-case convergence rate of the alternating direction method of multipliers," Other publications TiSEM f30ae9e6-ed19-423f-bd1e-0, Tilburg University, School of Economics and Management.
    6. Renato D. C. Monteiro & Chee-Khian Sim, 2018. "Complexity of the relaxed Peaceman–Rachford splitting method for the sum of two maximal strongly monotone operators," Computational Optimization and Applications, Springer, vol. 70(3), pages 763-790, July.
    7. Naomi Graham & Hao Hu & Jiyoung Im & Xinxin Li & Henry Wolkowicz, 2022. "A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2125-2143, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:176:y:2018:i:2:d:10.1007_s10957-017-1211-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.