IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v168y2016i3d10.1007_s10957-015-0846-1.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Implementation of Augmented Lagrangian Methods for Equilibrium Problems

Author

Listed:
  • Mostafa Nasri

    (McGill University)

  • Luiz Carlos Matioli

    (Universidade Federal do Paraná, UFPR PPGM/PPGMNE)

  • Euda Mara Silva Ferreira

    (FACEL and PPGMNE)

  • Adilson Silveira

    (Universidade Tecnológica Federal do Paraná - UTFPR PPGMNE)

Abstract

Actual implementation of augmented Lagrangian algorithms requires a solution of the subproblem generated at each iterate, which is the most challenging task. In this paper, we propose two approaches to make the augmented Lagrangian algorithms, introduced in Iusem and Nasri (RAIRO Oper Res 44:5–26, 2010) for equilibrium problems, computer amenable. The first algorithm that we suggest here incorporates the Newton method and the other one benefits from the Shor subgradient method to solve the subproblems that are produced when the augmented Lagrangian algorithms are applied to the equilibrium problem. We also illustrate our findings by numerical results which are obtained when our algorithms are implemented to solve quadratic equilibrium problems and certain generalized Nash equilibrium problem, including the river basin pollution problem, a particular case of the equilibrium problem. Moreover, we compare our numerical results with those presented in Matioli et al. (Comput Optim Appl 52:281–292, 2012) and Tran et al. (Optimization 57:749–776, 2008) for the same test problems.

Suggested Citation

  • Mostafa Nasri & Luiz Carlos Matioli & Euda Mara Silva Ferreira & Adilson Silveira, 2016. "Implementation of Augmented Lagrangian Methods for Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 971-991, March.
  • Handle: RePEc:spr:joptap:v:168:y:2016:i:3:d:10.1007_s10957-015-0846-1
    DOI: 10.1007/s10957-015-0846-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0846-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0846-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luiz Matioli & Wilfredo Sosa & Jinyun Yuan, 2012. "A numerical algorithm for finding solutions of a generalized Nash equilibrium problem," Computational Optimization and Applications, Springer, vol. 52(1), pages 281-292, May.
    2. M. Bianchi & R. Pini, 2005. "Coercivity Conditions for Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 124(1), pages 79-92, January.
    3. Bigi, Giancarlo & Castellani, Marco & Pappalardo, Massimo & Passacantando, Mauro, 2013. "Existence and solution methods for equilibria," European Journal of Operational Research, Elsevier, vol. 227(1), pages 1-11.
    4. L. D. Muu & T. D. Quoc, 2009. "Regularization Algorithms for Solving Monotone Ky Fan Inequalities with Application to a Nash-Cournot Equilibrium Model," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 185-204, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Bianchi & G. Kassay & R. Pini, 2022. "Brezis pseudomonotone bifunctions and quasi equilibrium problems via penalization," Journal of Global Optimization, Springer, vol. 82(3), pages 483-498, March.
    2. Somaye Jafari & Ali Farajzadeh & Sirous Moradi, 2016. "Locally Densely Defined Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 804-817, September.
    3. Mircea Balaj & Dan Florin Serac, 2023. "Generalized Equilibrium Problems," Mathematics, MDPI, vol. 11(9), pages 1-11, May.
    4. Jean Strodiot & Phan Vuong & Thi Nguyen, 2016. "A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces," Journal of Global Optimization, Springer, vol. 64(1), pages 159-178, January.
    5. Stefano Lucidi & Mauro Passacantando & Francesco Rinaldi, 2022. "Solving non-monotone equilibrium problems via a DIRECT-type approach," Journal of Global Optimization, Springer, vol. 83(4), pages 699-725, August.
    6. Ouayl Chadli & Qamrul Hasan Ansari & Jen-Chih Yao, 2016. "Mixed Equilibrium Problems and Anti-periodic Solutions for Nonlinear Evolution Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 410-440, February.
    7. Phan Tu Vuong & Jean Jacques Strodiot, 2018. "The Glowinski–Le Tallec splitting method revisited in the framework of equilibrium problems in Hilbert spaces," Journal of Global Optimization, Springer, vol. 70(2), pages 477-495, February.
    8. Yekini Shehu & Lulu Liu & Xiaolong Qin & Qiao-Li Dong, 2022. "Reflected Iterative Method for Non-Monotone Equilibrium Problems with Applications to Nash-Cournot Equilibrium Models," Networks and Spatial Economics, Springer, vol. 22(1), pages 153-180, March.
    9. Gábor Kassay & Mihaela Miholca, 2015. "Existence results for vector equilibrium problems given by a sum of two functions," Journal of Global Optimization, Springer, vol. 63(1), pages 195-211, September.
    10. Bigi, Giancarlo & Castellani, Marco & Pappalardo, Massimo & Passacantando, Mauro, 2013. "Existence and solution methods for equilibria," European Journal of Operational Research, Elsevier, vol. 227(1), pages 1-11.
    11. Marco Castellani & Massimiliano Giuli & Massimo Pappalardo, 2018. "A Ky Fan Minimax Inequality for Quasiequilibria on Finite-Dimensional Spaces," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 53-64, October.
    12. Riccardi, R. & Bonenti, F. & Allevi, E. & Avanzi, C. & Gnudi, A., 2015. "The steel industry: A mathematical model under environmental regulations," European Journal of Operational Research, Elsevier, vol. 242(3), pages 1017-1027.
    13. Thi Thu Van Nguyen & Jean Jacques Strodiot & Van Hien Nguyen, 2014. "Hybrid Methods for Solving Simultaneously an Equilibrium Problem and Countably Many Fixed Point Problems in a Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 809-831, March.
    14. Massimiliano Giuli, 2013. "Closedness of the Solution Map in Quasivariational Inequalities of Ky Fan Type," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 130-144, July.
    15. Gábor Kassay & Mihaela Miholca, 2013. "Existence Results for Variational Inequalities with Surjectivity Consequences Related to Generalized Monotone Operators," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 721-740, December.
    16. John Cotrina & Anton Svensson, 2021. "The finite intersection property for equilibrium problems," Journal of Global Optimization, Springer, vol. 79(4), pages 941-957, April.
    17. Le Quang Thuy & Trinh Ngoc Hai, 2017. "A Projected Subgradient Algorithm for Bilevel Equilibrium Problems and Applications," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 411-431, November.
    18. Pham Ky Anh & Trinh Ngoc Hai, 2019. "Novel self-adaptive algorithms for non-Lipschitz equilibrium problems with applications," Journal of Global Optimization, Springer, vol. 73(3), pages 637-657, March.
    19. Bijaya Kumar Sahu & Ouayl Chadli & Ram N. Mohapatra & Sabyasachi Pani, 2020. "Existence Results for Mixed Equilibrium Problems Involving Set-Valued Operators with Applications to Quasi-Hemivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 810-823, March.
    20. M. Darabi & J. Zafarani, 2015. "Tykhonov Well-Posedness for Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 458-479, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:168:y:2016:i:3:d:10.1007_s10957-015-0846-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.