Scalarization of $$\epsilon $$ ϵ -Super Efficient Solutions of Set-Valued Optimization Problems in Real Ordered Linear Spaces
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-014-0565-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Z. A. Zhou & J. W. Peng, 2012. "Scalarization of Set-Valued Optimization Problems with Generalized Cone Subconvexlikeness in Real Ordered Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 830-841, September.
- X. Y. Zheng, 1997. "Proper Efficiency in Locally Convex Topological Vector Spaces," Journal of Optimization Theory and Applications, Springer, vol. 94(2), pages 469-486, August.
- Taiyong Li & Yihong Xu & Chuanxi Zhu, 2007. "∊-Strictly Efficient Solutions Of Vector Optimization Problems With Set-Valued Maps," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(06), pages 841-854.
- Adan, M. & Novo, V., 2003. "Weak efficiency in vector optimization using a closure of algebraic type under cone-convexlikeness," European Journal of Operational Research, Elsevier, vol. 149(3), pages 641-653, September.
- W. D. Rong & Y. N. Wu, 2000. "∈-Weak Minimal Solutions of Vector Optimization Problems with Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 106(3), pages 569-579, September.
- M. Adán & V. Novo, 2004. "Proper Efficiency in Vector Optimization on Real Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 515-540, June.
- L. Y. Xia & J. H. Qiu, 2008. "Superefficiency in Vector Optimization with Nearly Subconvexlike Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 125-137, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Elisabeth Köbis & Markus A. Köbis & Xiaolong Qin, 2020. "An Inequality Approach to Approximate Solutions of Set Optimization Problems in Real Linear Spaces," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- C. Gutiérrez & L. Huerga & B. Jiménez & V. Novo, 2018. "Approximate solutions of vector optimization problems via improvement sets in real linear spaces," Journal of Global Optimization, Springer, vol. 70(4), pages 875-901, April.
- M. Chinaie & F. Fakhar & M. Fakhar & H. R. Hajisharifi, 2019. "Weak minimal elements and weak minimal solutions of a nonconvex set-valued optimization problem," Journal of Global Optimization, Springer, vol. 75(1), pages 131-141, September.
- Z. A. Zhou & J. W. Peng, 2012. "Scalarization of Set-Valued Optimization Problems with Generalized Cone Subconvexlikeness in Real Ordered Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 830-841, September.
- Christian Günther & Bahareh Khazayel & Christiane Tammer, 2022. "Vector Optimization w.r.t. Relatively Solid Convex Cones in Real Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 408-442, June.
- Elisabeth Köbis & Markus A. Köbis & Xiaolong Qin, 2020. "An Inequality Approach to Approximate Solutions of Set Optimization Problems in Real Linear Spaces," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
- Elham Kiyani & Majid Soleimani-damaneh, 2014. "Algebraic Interior and Separation on Linear Vector Spaces: Some Comments," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 994-998, June.
- Vicente Novo & Constantin Zălinescu, 2021. "On Relatively Solid Convex Cones in Real Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 277-290, January.
- Ovidiu Bagdasar & Nicolae Popovici, 2018. "Unifying local–global type properties in vector optimization," Journal of Global Optimization, Springer, vol. 72(2), pages 155-179, October.
- E. K. Makarov & N. N. Rachkovski, 1999. "Unified Representation of Proper Efficiency by Means of Dilating Cones," Journal of Optimization Theory and Applications, Springer, vol. 101(1), pages 141-165, April.
- Fernando García-Castaño & Miguel Ángel Melguizo-Padial & G. Parzanese, 2023. "Sublinear scalarizations for proper and approximate proper efficient points in nonconvex vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 367-382, June.
- J. H. Qiu & Y. Hao, 2010. "Scalarization of Henig Properly Efficient Points in Locally Convex Spaces," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 71-92, October.
- J. H. Qiu, 2007. "Superefficiency in Local Convex Spaces," Journal of Optimization Theory and Applications, Springer, vol. 135(1), pages 19-35, October.
- M. Adán & V. Novo, 2004. "Proper Efficiency in Vector Optimization on Real Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 515-540, June.
- L. Huerga & B. Jiménez & V. Novo, 2022. "New Notions of Proper Efficiency in Set Optimization with the Set Criterion," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 878-902, December.
- Zhiang Zhou & Wenbin Wei & Fei Huang & Kequan Zhao, 2024. "Approximate weak efficiency of the set-valued optimization problem with variable ordering structures," Journal of Combinatorial Optimization, Springer, vol. 48(3), pages 1-13, October.
- Zhiang Zhou & Kehui Liang & Qamrul Hasan Ansari, 2025. "Optimality conditions for Benson proper efficiency of set-valued equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 101(1), pages 111-134, February.
- X. D. H. Truong, 2001. "Existence and Density Results for Proper Efficiency in Cone Compact Sets," Journal of Optimization Theory and Applications, Springer, vol. 111(1), pages 173-194, October.
- Angelo Guerraggio & Dinh The Luc, 2006. "Properly Maximal Points in Product Spaces," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 305-315, May.
- Anveksha Moar & Pradeep Kumar Sharma & C. S. Lalitha, 2024. "Nonlinear scalarization in set optimization based on the concept of null set," Journal of Global Optimization, Springer, vol. 89(4), pages 1099-1119, August.
- Davide LA TORRE & Nicolae POPOVICI & Matteo ROCCA, 2008. "Scalar characterization of explicitly quasiconvex set-valued maps," Departmental Working Papers 2008-01, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
More about this item
Keywords
Set-valued maps; Generalized cone subconvexlikeness; $$epsilon $$ ϵ -Super efficient solutions; Scalarization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:162:y:2014:i:2:d:10.1007_s10957-014-0565-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.