IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v155y2012i1d10.1007_s10957-012-0055-0.html
   My bibliography  Save this article

Iterative Methods for Pseudomonotone Variational Inequalities and Fixed-Point Problems

Author

Listed:
  • Yonghong Yao

    (Tianjin Polytechnic University)

  • Mihai Postolache

    (University “Politehnica” of Bucharest)

Abstract

In this paper, we introduce an iterative scheme for finding a common element of the set of solution of a pseudomonotone, Lipschitz-continuous variational inequality problem and the set of common fixed points of an infinite family of nonexpansive mappings. The proposed iterative method combines two well-known schemes: extragradient and approximate proximal methods. We derive some necessary and sufficient conditions for strong convergence of the sequences generated by the proposed scheme.

Suggested Citation

  • Yonghong Yao & Mihai Postolache, 2012. "Iterative Methods for Pseudomonotone Variational Inequalities and Fixed-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 273-287, October.
  • Handle: RePEc:spr:joptap:v:155:y:2012:i:1:d:10.1007_s10957-012-0055-0
    DOI: 10.1007/s10957-012-0055-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0055-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0055-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. C. Ceng & M. Teboulle & J. C. Yao, 2010. "Weak Convergence of an Iterative Method for Pseudomonotone Variational Inequalities and Fixed-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 19-31, July.
    2. M. Bianchi & R. Pini, 2005. "Coercivity Conditions for Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 124(1), pages 79-92, January.
    3. Jen-Chih Yao, 1994. "Variational Inequalities with Generalized Monotone Operators," Mathematics of Operations Research, INFORMS, vol. 19(3), pages 691-705, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu-Chuan Ceng & Xiaoye Yang, 2019. "Some Mann-Type Implicit Iteration Methods for Triple Hierarchical Variational Inequalities, Systems Variational Inequalities and Fixed Point Problems," Mathematics, MDPI, vol. 7(3), pages 1-20, February.
    2. Lateef Olakunle Jolaoso & Adeolu Taiwo & Timilehin Opeyemi Alakoya & Oluwatosin Temitope Mewomo, 2020. "A Strong Convergence Theorem for Solving Pseudo-monotone Variational Inequalities Using Projection Methods," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 744-766, June.
    3. Huan Zhang & Xiaolan Liu & Yan Sun & Ju Hu, 2023. "An Alternated Inertial Projection Algorithm for Multi-Valued Variational Inequality and Fixed Point Problems," Mathematics, MDPI, vol. 11(8), pages 1-13, April.
    4. Yonghong Yao & Mihai Postolache & Jen-Chih Yao, 2019. "An Iterative Algorithm for Solving Generalized Variational Inequalities and Fixed Points Problems," Mathematics, MDPI, vol. 7(1), pages 1-15, January.
    5. Thi Thu Van Nguyen & Jean Jacques Strodiot & Van Hien Nguyen, 2014. "Hybrid Methods for Solving Simultaneously an Equilibrium Problem and Countably Many Fixed Point Problems in a Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 809-831, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lateef Olakunle Jolaoso & Adeolu Taiwo & Timilehin Opeyemi Alakoya & Oluwatosin Temitope Mewomo, 2020. "A Strong Convergence Theorem for Solving Pseudo-monotone Variational Inequalities Using Projection Methods," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 744-766, June.
    2. Truong Duong & Nguyen Tan, 2012. "On the existence of solutions to generalized quasi-equilibrium problems," Journal of Global Optimization, Springer, vol. 52(4), pages 711-728, April.
    3. Mostafa Ghadampour & Ebrahim Soori & Ravi P. Agarwal & Donal O’Regan, 2022. "A Strong Convergence Theorem for Solving an Equilibrium Problem and a Fixed Point Problem Using the Bregman Distance," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 854-877, December.
    4. L. C. Zeng & J. C. Yao, 2007. "Existence Theorems for Variational Inequalities in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 132(2), pages 321-337, February.
    5. Yonghong Yao & Yeong-Cheng Liou & Shin Kang, 2013. "Two-step projection methods for a system of variational inequality problems in Banach spaces," Journal of Global Optimization, Springer, vol. 55(4), pages 801-811, April.
    6. A. P. Farajzadeh & M. A. Noor, 2010. "On Dual Invex Ky Fan Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 407-413, May.
    7. Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
    8. M. Bianchi & G. Kassay & R. Pini, 2022. "Brezis pseudomonotone bifunctions and quasi equilibrium problems via penalization," Journal of Global Optimization, Springer, vol. 82(3), pages 483-498, March.
    9. Vu Thi Huong & Jen-Chih Yao & Nguyen Dong Yen, 2017. "On the Stability and Solution Sensitivity of a Consumer Problem," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 567-589, November.
    10. Mostafa Nasri & Luiz Carlos Matioli & Euda Mara Silva Ferreira & Adilson Silveira, 2016. "Implementation of Augmented Lagrangian Methods for Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 971-991, March.
    11. Mircea Balaj & Marco Castellani & Massimiliano Giuli, 2023. "New criteria for existence of solutions for equilibrium problems," Computational Management Science, Springer, vol. 20(1), pages 1-16, December.
    12. Monica Bianchi & Siegfried Schaible, 2004. "Equilibrium Problems under Generalized Convexity and Generalized Monotonicity," Journal of Global Optimization, Springer, vol. 30(2), pages 121-134, November.
    13. L. C. Zeng & N. C. Wong & J. C. Yao, 2007. "Convergence Analysis of Modified Hybrid Steepest-Descent Methods with Variable Parameters for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 51-69, January.
    14. Massimiliano Giuli, 2013. "Closedness of the Solution Map in Quasivariational Inequalities of Ky Fan Type," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 130-144, July.
    15. Somaye Jafari & Ali Farajzadeh & Sirous Moradi, 2016. "Locally Densely Defined Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 804-817, September.
    16. Gábor Kassay & Mihaela Miholca, 2013. "Existence Results for Variational Inequalities with Surjectivity Consequences Related to Generalized Monotone Operators," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 721-740, December.
    17. I. V. Konnov, 2015. "Regularized Penalty Method for General Equilibrium Problems in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 500-513, February.
    18. John Cotrina & Anton Svensson, 2021. "The finite intersection property for equilibrium problems," Journal of Global Optimization, Springer, vol. 79(4), pages 941-957, April.
    19. Lai-Jiu Lin & Zenn-Tsun Yu & Chih-Sheng Chuang, 2013. "Weak and strong convergence theorems for asymptotically pseudo-contraction mappings in the intermediate sense in Hilbert spaces," Journal of Global Optimization, Springer, vol. 56(1), pages 165-183, May.
    20. N. El Farouq, 2001. "Pseudomonotone Variational Inequalities: Convergence of the Auxiliary Problem Method," Journal of Optimization Theory and Applications, Springer, vol. 111(2), pages 305-322, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:155:y:2012:i:1:d:10.1007_s10957-012-0055-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.