IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v154y2012i1d10.1007_s10957-012-0001-1.html
   My bibliography  Save this article

Cyclic Seesaw Process for Optimization and Identification

Author

Listed:
  • James C. Spall

    (The Johns Hopkins University
    The Johns Hopkins University)

Abstract

A known approach to optimization is the cyclic (or alternating or block coordinate) method, where the full parameter vector is divided into two or more subvectors and the process proceeds by sequentially optimizing each of the subvectors, while holding the remaining parameters at their most recent values. One advantage of such a scheme is the preservation of potentially large investments in software, while allowing for an extension of capability to include new parameters for estimation. A specific case of interest involves cross-sectional data that is modeled in state–space form, where there is interest in estimating the mean vector and covariance matrix of the initial state vector as well as certain parameters associated with the dynamics of the underlying differential equations (e.g., power spectral density parameters). This paper shows that, under reasonable conditions, the cyclic scheme leads to parameter estimates that converge to the optimal joint value for the full vector of unknown parameters. Convergence conditions here differ from others in the literature. Further, relative to standard search methods on the full vector, numerical results here suggest a more general property of faster convergence for seesaw as a consequence of the more “aggressive” (larger) gain coefficient (step size) possible.

Suggested Citation

  • James C. Spall, 2012. "Cyclic Seesaw Process for Optimization and Identification," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 187-208, July.
  • Handle: RePEc:spr:joptap:v:154:y:2012:i:1:d:10.1007_s10957-012-0001-1
    DOI: 10.1007/s10957-012-0001-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0001-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0001-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haaland, Ben & Min, Wanli & Qian, Peter Z. G. & Amemiya, Yasuo, 2010. "A Statistical Approach to Thermal Management of Data Centers Under Steady State and System Perturbations," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1030-1041.
    2. P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
    3. McLachlan, Geoffrey J. & Krishnan, Thriyambakam & Ng, See Ket, 2004. "The EM Algorithm," Papers 2004,24, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    4. Charles Audet & Jack Brimberg & Pierre Hansen & Sébastien Le Digabel & Nenad Mladenovi'{c}, 2004. "Pooling Problem: Alternate Formulations and Solution Methods," Management Science, INFORMS, vol. 50(6), pages 761-776, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Wang, 2015. "Analysis of practical step size selection in stochastic approximation algorithms," Annals of Operations Research, Springer, vol. 229(1), pages 759-769, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    2. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    3. Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.
    4. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    5. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    6. Paul Tseng, 2004. "An Analysis of the EM Algorithm and Entropy-Like Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 27-44, February.
    7. Omer, E. & Guetta, R. & Ioslovich, I. & Gutman, P.O. & Borshchevsky, M., 2008. "“Energy Tower” combined with pumped storage and desalination: Optimal design and analysis," Renewable Energy, Elsevier, vol. 33(4), pages 597-607.
    8. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    9. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    10. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    11. Fang, Kuangnan & Wang, Xiaoyan & Shia, Ben-Chang & Ma, Shuangge, 2016. "Identification of proportionality structure with two-part models using penalization," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 12-24.
    12. Z. John Daye & Jinbo Chen & Hongzhe Li, 2012. "High-Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis," Biometrics, The International Biometric Society, vol. 68(1), pages 316-326, March.
    13. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2015. "Optimal Replenishment Order Placement in a Finite Time Horizon," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1078-1089, March.
    14. Żyromski, Andrzej & Szulczewski, Wiesław & Biniak-Pieróg, Małgorzata & Jakubowski, Wojciech, 2016. "The estimation of basket willow (Salix viminalis) yield – New approach. Part I: Background and statistical description," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1118-1126.
    15. Griveau-Billion, Théophile & Richard, Jean-Charles & Roncalli, Thierry, 2013. "A Fast Algorithm for Computing High-dimensional Risk Parity Portfolios," MPRA Paper 49822, University Library of Munich, Germany.
    16. Ke-Hai Yuan & Kentaro Hayashi, 2005. "On muthén’s maximum likelihood for two-level covariance structure models," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 147-167, March.
    17. Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Mohammed Alfaki & Dag Haugland, 2013. "Strong formulations for the pooling problem," Journal of Global Optimization, Springer, vol. 56(3), pages 897-916, July.
    19. Yanming Li & Bin Nan & Ji Zhu, 2015. "Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure," Biometrics, The International Biometric Society, vol. 71(2), pages 354-363, June.
    20. P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:154:y:2012:i:1:d:10.1007_s10957-012-0001-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.