IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v122y2004i1d10.1023_bjota.0000041736.82051.f1.html
   My bibliography  Save this article

Technical Note: On Ordinal Comparison of Policies in Markov Reward Processes

Author

Listed:
  • H. S. Chang

    (Sogang University)

Abstract

An asymptotic exponential convergence rate of ordinal comparison from large deviations theory is well known for selecting the true best solution from the candidate solutions sample means. This note supplements the theories developed by Dai within the framework of ergodic Markov reward processes for ε-ordinal comparison of policies, establishing an asymptotic exponential convergence rate for the infinite-horizon average criterion.

Suggested Citation

  • H. S. Chang, 2004. "Technical Note: On Ordinal Comparison of Policies in Markov Reward Processes," Journal of Optimization Theory and Applications, Springer, vol. 122(1), pages 207-217, July.
  • Handle: RePEc:spr:joptap:v:122:y:2004:i:1:d:10.1023_b:jota.0000041736.82051.f1
    DOI: 10.1023/B:JOTA.0000041736.82051.f1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:JOTA.0000041736.82051.f1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:JOTA.0000041736.82051.f1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y-C Ho & C G Cassandras & C-H Chen & L Dai, 2000. "Ordinal optimisation and simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(4), pages 490-500, April.
    2. Glynn, Peter W. & Ormoneit, Dirk, 2002. "Hoeffding's inequality for uniformly ergodic Markov chains," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 143-146, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongqiang Tang, 2007. "A Hoeffding-Type Inequality for Ergodic Time Series," Journal of Theoretical Probability, Springer, vol. 20(2), pages 167-176, June.
    2. L. Jeff Hong & Barry L. Nelson, 2006. "Discrete Optimization via Simulation Using COMPASS," Operations Research, INFORMS, vol. 54(1), pages 115-129, February.
    3. Liu, Jinpeng & Liu, Yuanyuan & Zhao, Yiqiang Q., 2022. "Augmented truncation approximations to the solution of Poisson’s equation for Markov chains," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    4. S.Y. Lin & Y.C. Ho, 2002. "Universal Alignment Probability Revisited," Journal of Optimization Theory and Applications, Springer, vol. 113(2), pages 399-407, May.
    5. Shie Mannor & John N. Tsitsiklis, 2005. "On the Empirical State-Action Frequencies in Markov Decision Processes Under General Policies," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 545-561, August.
    6. Sandrić, Nikola & Šebek, Stjepan, 2023. "Hoeffding’s inequality for non-irreducible Markov models," Statistics & Probability Letters, Elsevier, vol. 200(C).
    7. H. S. Chang, 2005. "On the Probability of Correct Selection by Distributed Voting in Stochastic Optimization," Journal of Optimization Theory and Applications, Springer, vol. 125(1), pages 231-240, April.
    8. Miasojedow, Błażej, 2014. "Hoeffding’s inequalities for geometrically ergodic Markov chains on general state space," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 115-120.
    9. Renou, Ludovic & Tomala, Tristan, 2015. "Approximate implementation in Markovian environments," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 401-442.
    10. Ahmad, I.A. & Amezziane, M., 2013. "Probability inequalities for bounded random vectors," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1136-1142.
    11. Penev, Spiridon & Peng, Hanxiang & Schick, Anton & Wefelmeyer, Wolfgang, 2004. "Efficient estimators for functionals of Markov chains with parametric marginals," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 335-345, February.
    12. Shing Chih Tsai & Tse Yang, 2017. "Rapid screening algorithms for stochastically constrained problems," Annals of Operations Research, Springer, vol. 254(1), pages 425-447, July.
    13. Hunt, F.Y., 2005. "Sample path optimality for a Markov optimization problem," Stochastic Processes and their Applications, Elsevier, vol. 115(5), pages 769-779, May.
    14. A K Miranda & E Del Castillo, 2011. "Robust parameter design optimization of simulation experiments using stochastic perturbation methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 198-205, January.
    15. Hyeong Soo Chang & Jiaqiao Hu, 2012. "On the Probability of Correct Selection in Ordinal Comparison over Dynamic Networks," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 594-604, November.
    16. Ankush Agarwal & Stefano de Marco & Emmanuel Gobet & Gang Liu, 2017. "Rare event simulation related to financial risks: efficient estimation and sensitivity analysis," Working Papers hal-01219616, HAL.
    17. Svetlana Ekisheva & Mark Borodovsky, 2011. "Uniform Accuracy of the Maximum Likelihood Estimates for Probabilistic Models of Biological Sequences," Methodology and Computing in Applied Probability, Springer, vol. 13(1), pages 105-120, March.
    18. Michael C. Fu, 2002. "Feature Article: Optimization for simulation: Theory vs. Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 192-215, August.
    19. Boucher, Thomas R., 2009. "A Hoeffding inequality for Markov chains using a generalized inverse," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1105-1107, April.
    20. Sudip Bhattacharjee & Hong Zhang & R. Ramesh & Dee H. Andrews, 2007. "A Decomposition and Guided Simulation Methodology for Large-Scale System Design: A Study in QoS-Capable Intranets with Fixed and Mobile Components," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 429-442, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:122:y:2004:i:1:d:10.1023_b:jota.0000041736.82051.f1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.