IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v121y2004i2d10.1023_bjota.0000037413.45495.00.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

On Quasimonotone Variational Inequalities

Author

Listed:
  • D. Aussel

    (Université de Perpignan)

  • N. Hadjisavvas

    (University of the Aegean)

Abstract

The purpose of this paper is to prove the existence of solutions of the Stampacchia variational inequality for a quasimonotone multivalued operator without any assumption on the existence of inner points. Moreover, the operator is not supposed to be bounded valued. The result strengthens a variety of other results in the literature.

Suggested Citation

  • D. Aussel & N. Hadjisavvas, 2004. "On Quasimonotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 121(2), pages 445-450, May.
  • Handle: RePEc:spr:joptap:v:121:y:2004:i:2:d:10.1023_b:jota.0000037413.45495.00
    DOI: 10.1023/B:JOTA.0000037413.45495.00
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:JOTA.0000037413.45495.00
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:JOTA.0000037413.45495.00?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Daniilidis & N. Hadjisavvas, 1999. "Characterization of Nonsmooth Semistrictly Quasiconvex and Strictly Quasiconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 525-536, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Kabgani, 2021. "Characterization of Nonsmooth Quasiconvex Functions and their Greenberg–Pierskalla’s Subdifferentials Using Semi-Quasidifferentiability notion," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 666-678, May.
    2. Vsevolod Ivanov, 2010. "On a theorem due to Crouzeix and Ferland," Journal of Global Optimization, Springer, vol. 46(1), pages 31-47, January.
    3. A. Daniilidis & Y. Garcia Ramos, 2007. "Some Remarks on the Class of Continuous (Semi-) Strictly Quasiconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 133(1), pages 37-48, April.
    4. Ravi P. Agarwal & Mircea Balaj & Donal O’Regan, 2017. "Common Fixed Point Theorems in Topological Vector Spaces via Intersection Theorems," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 443-458, May.
    5. R. P. Agarwal & M. Balaj & D. O’Regan, 2014. "A Common Fixed Point Theorem with Applications," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 482-490, November.
    6. D. Aussel & J. Cotrina, 2013. "Quasimonotone Quasivariational Inequalities: Existence Results and Applications," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 637-652, September.
    7. Arnaldo S. Brito & J. X. Cruz Neto & Jurandir O. Lopes & P. Roberto Oliveira, 2012. "Interior Proximal Algorithm for Quasiconvex Programming Problems and Variational Inequalities with Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 217-234, July.
    8. M.J. Penttinen, 2000. "Timber Harvesting with Variable Prices and Costs," Working Papers ir00045, International Institute for Applied Systems Analysis.
    9. E. Allevi & A. Gnudi & I. Konnov, 2006. "The Proximal Point Method for Nonmonotone Variational Inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 553-565, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:121:y:2004:i:2:d:10.1023_b:jota.0000037413.45495.00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.