IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v120y2004i1d10.1023_bjota.0000012735.86699.a1.html
   My bibliography  Save this article

Duality for Multiobjective Optimization via Nonlinear Lagrangian Functions

Author

Listed:
  • X. X. Huang

    (Chongqing Normal University
    Hong Kong Polytechnic University)

  • X. Q. Yang

    (Hong Kong Polytechnic University)

Abstract

In this paper, a strong nonlinear Lagrangian duality result is established for an inequality constrained multiobjective optimization problem. This duality result improves and unifies existing strong nonlinear Lagrangian duality results in the literature. As a direct consequence, a strong nonlinear Lagrangian duality result for an inequality constrained scalar optimization problem is obtained. Also, a variant set of conditions is used to derive another version of the strong duality result via nonlinear Lagrangian for an inequality constrained multiobjective optimization problem.

Suggested Citation

  • X. X. Huang & X. Q. Yang, 2004. "Duality for Multiobjective Optimization via Nonlinear Lagrangian Functions," Journal of Optimization Theory and Applications, Springer, vol. 120(1), pages 111-127, January.
  • Handle: RePEc:spr:joptap:v:120:y:2004:i:1:d:10.1023_b:jota.0000012735.86699.a1
    DOI: 10.1023/B:JOTA.0000012735.86699.a1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:JOTA.0000012735.86699.a1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:JOTA.0000012735.86699.a1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. J. Goh & X. Q. Yang, 2001. "Nonlinear Lagrangian Theory for Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 109(1), pages 99-121, April.
    2. X. X. Huang & X. Q. Yang, 2001. "Duality and Exact Penalization for Vector Optimization via Augmented Lagrangian," Journal of Optimization Theory and Applications, Springer, vol. 111(3), pages 615-640, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Y. Azimov, 2008. "Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming," Journal of Optimization Theory and Applications, Springer, vol. 137(1), pages 61-74, April.
    2. G. Bento & J. Cruz Neto & G. López & Antoine Soubeyran & J. Souza, 2018. "The Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization with Application to the Compromise Problem," Post-Print hal-01985333, HAL.
    3. Glaydston de C. Bento & João Xavier Cruz Neto & Lucas V. Meireles, 2018. "Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization of Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 37-52, October.
    4. Villacorta, Kely D.V. & Oliveira, P. Roberto, 2011. "An interior proximal method in vector optimization," European Journal of Operational Research, Elsevier, vol. 214(3), pages 485-492, November.
    5. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    6. G. C. Bento & J. X. Cruz Neto & L. V. Meireles & A. Soubeyran, 2022. "Pareto solutions as limits of collective traps: an inexact multiobjective proximal point algorithm," Annals of Operations Research, Springer, vol. 316(2), pages 1425-1443, September.
    7. Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Antoine Soubeyran & João Carlos Oliveira Souza, 2020. "A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems," Computational Optimization and Applications, Springer, vol. 75(1), pages 263-290, January.
    8. Rogério A. Rocha & Paulo R. Oliveira & Ronaldo M. Gregório & Michael Souza, 2016. "A Proximal Point Algorithm with Quasi-distance in Multi-objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 964-979, December.
    9. H. Apolinário & E. Papa Quiroz & P. Oliveira, 2016. "A scalarization proximal point method for quasiconvex multiobjective minimization," Journal of Global Optimization, Springer, vol. 64(1), pages 79-96, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Paul Penot, 2010. "Are dualities appropriate for duality theories in optimization?," Journal of Global Optimization, Springer, vol. 47(3), pages 503-525, July.
    2. A. M. Rubinov & X. X. Huang & X. Q. Yang, 2002. "The Zero Duality Gap Property and Lower Semicontinuity of the Perturbation Function," Mathematics of Operations Research, INFORMS, vol. 27(4), pages 775-791, November.
    3. A. Y. Azimov, 2008. "Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming," Journal of Optimization Theory and Applications, Springer, vol. 137(1), pages 61-74, April.
    4. C. Y. Wang & X. Q. Yang & X. M. Yang, 2007. "Unified Nonlinear Lagrangian Approach to Duality and Optimal Paths," Journal of Optimization Theory and Applications, Springer, vol. 135(1), pages 85-100, October.
    5. X.Q. Yang, 2003. "On the Gap Functions of Prevariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 437-452, February.
    6. Gulcin Dinc Yalcin & Refail Kasimbeyli, 2020. "On weak conjugacy, augmented Lagrangians and duality in nonconvex optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 199-228, August.
    7. Xinsheng Xu & Zhiqing Meng & Jianwu Sun & Liguo Huang & Rui Shen, 2013. "A second-order smooth penalty function algorithm for constrained optimization problems," Computational Optimization and Applications, Springer, vol. 55(1), pages 155-172, May.
    8. X. X. Huang & X. Q. Yang, 2003. "A Unified Augmented Lagrangian Approach to Duality and Exact Penalization," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 533-552, August.
    9. A. M. Rubinov & X. Q. Yang & B. M. Glover, 2001. "Extended Lagrange and Penalty Functions in Optimization," Journal of Optimization Theory and Applications, Springer, vol. 111(2), pages 381-405, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:120:y:2004:i:1:d:10.1023_b:jota.0000012735.86699.a1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.