IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v108y2001i3d10.1023_a1017595610700.html
   My bibliography  Save this article

Pointwise Well-Posedness of Perturbed Vector Optimization Problems in a Vector-Valued Variational Principle

Author

Listed:
  • X. X. Huang

    (Chongqing Normal University)

Abstract

In this note, we point out and correct some errors in Ref. 1. Another type of pointwise well-posedness and strong pointwise well-posedness of vector optimization problems is introduced. Sufficient conditions to guarantee this type of well-posedness are provided for perturbed vector optimization problems in connection with the vector-valued Ekeland variational principle.

Suggested Citation

  • X. X. Huang, 2001. "Pointwise Well-Posedness of Perturbed Vector Optimization Problems in a Vector-Valued Variational Principle," Journal of Optimization Theory and Applications, Springer, vol. 108(3), pages 671-684, March.
  • Handle: RePEc:spr:joptap:v:108:y:2001:i:3:d:10.1023_a:1017595610700
    DOI: 10.1023/A:1017595610700
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1017595610700
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1017595610700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guang Ya Chen & X. X. Huang, 1998. "Ekeland's ε-variational principle for set-valued mappings," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 181-186, November.
    2. G. Y. Chen & X. X. Huang, 1998. "A unified approach to the existing three types of variational principles for vector valued functions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(3), pages 349-357, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ya-ping Fang & Nan-jing Huang, 2007. "Increasing-along-rays property, vector optimization and well-posedness," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 99-114, February.
    2. Onetti Alberto & Verma Sameer, 2008. "Licensing and Business Models," Economics and Quantitative Methods qf0806, Department of Economics, University of Insubria.
    3. S. Khoshkhabar-amiranloo & E. Khorram, 2015. "Pointwise well-posedness and scalarization in set optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 195-210, October.
    4. X. J. Long & J. W. Peng, 2013. "Generalized B-Well-Posedness for Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 612-623, June.
    5. Li Zhu & Fu-quan Xia, 2012. "Scalarization method for Levitin–Polyak well-posedness of vectorial optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(3), pages 361-375, December.
    6. Rocca Matteo & Papalia Melania, 2008. "Well-posedness in vector optimization and scalarization results," Economics and Quantitative Methods qf0807, Department of Economics, University of Insubria.
    7. S. Li & W. Zhang, 2010. "Hadamard well-posed vector optimization problems," Journal of Global Optimization, Springer, vol. 46(3), pages 383-393, March.
    8. Elisa Mastrogiacomo & Matteo Rocca, 2021. "Set optimization of set-valued risk measures," Annals of Operations Research, Springer, vol. 296(1), pages 291-314, January.
    9. Y. P. Fang & R. Hu & N. J. Huang, 2007. "Extended B-Well-Posedness and Property (H) for Set-Valued Vector Optimization with Convexity," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 445-458, December.
    10. Xian-Jun Long & Jian-Wen Peng & Zai-Yun Peng, 2015. "Scalarization and pointwise well-posedness for set optimization problems," Journal of Global Optimization, Springer, vol. 62(4), pages 763-773, August.
    11. Jacqueline Morgan, 2005. "Approximations and Well-Posedness in Multicriteria Games," Annals of Operations Research, Springer, vol. 137(1), pages 257-268, July.
    12. M. Durea, 2007. "Scalarization for pointwise well-posed vectorial problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 409-418, December.
    13. Giovanni P. Crespi & Mansi Dhingra & C. S. Lalitha, 2018. "Pointwise and global well-posedness in set optimization: a direct approach," Annals of Operations Research, Springer, vol. 269(1), pages 149-166, October.
    14. Miglierina Enrico & Molho Elena & Rocca Matteo, 2004. "Well-posedness and scalarization in vector optimization," Economics and Quantitative Methods qf0403, Department of Economics, University of Insubria.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. X. D. Ha, 2005. "Some Variants of the Ekeland Variational Principle for a Set-Valued Map," Journal of Optimization Theory and Applications, Springer, vol. 124(1), pages 187-206, January.
    2. X. X. Huang, 2000. "Extended Well-Posedness Properties of Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 106(1), pages 165-182, July.
    3. Behnam Soleimani, 2014. "Characterization of Approximate Solutions of Vector Optimization Problems with a Variable Order Structure," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 605-632, August.
    4. G. Y. Chen & X. X. Huang & S. H. Hou, 2000. "General Ekeland's Variational Principle for Set-Valued Mappings," Journal of Optimization Theory and Applications, Springer, vol. 106(1), pages 151-164, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:108:y:2001:i:3:d:10.1023_a:1017595610700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.