IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i5d10.1007_s10845-024-02377-4.html
   My bibliography  Save this article

Sparse deep encoded features with enhanced sinogramic red deer optimization for fault inspection in wafer maps

Author

Listed:
  • Doaa A. Altantawy

    (Mansoura University)

  • Mohamed A. Yakout

    (Mansoura University)

Abstract

Due to the complexity and dynamics of the semiconductor manufacturing processes, wafer bin maps (WBM) present various defect patterns caused by various process faults. The defect type detection on wafer maps provides information about the process and equipment in which the defect occurred. Recently, automatic inspection has played a vital role in meeting the high-throughput demand, especially with deep convolutional neural networks (DCNN) which shows promising efficiency. At the same time, the need for a large amount of labeled and balanced datasets limits the performance of such approaches. In addition, complex DCNN in recognition tasks can provide redundant features that cause overfitting and reduce interpretability. In this paper, a new hybrid deep model for wafer map fault detection to get over these challenges is proposed. Firstly, a new convolutional autoencoder (CAE) is employed as a synthetization model to fix the high imbalance problem of the dataset. Secondly, for efficient dimensionality reduction, an embedding procedure is applied to the synthesized maps to get sparse encoded wafer maps by reinforcing a sparsity regularization in an encoder-decoder network to form a sparsity-boosted autoencoder (SBAE). The sparse embedding of wafer maps guarantees more discriminative features with 50% reduction in spatial size compared to the original wafer maps. Then, the 2D encoded sparse maps are converted to 1D sinograms to be fed later into another aggressive feature reduction stage using a new modified red deer algorithm with a new tinkering strategy. The resultant feature pool is reduced to ~ 25 1D feature bases, i.e., ~ 1.5% of the initial size of the 2D wafer maps. Finally, for the prediction stage, a simple 1DCNN model is introduced. The proposed inspection model is tested via different experiments on real-world wafer map dataset (WM-811K). Compared to state-of-the-art techniques, the proposed model outperforms their performance even with small-sized 1D feature pool. The average testing accuracy are 98.77% and 98.8% for 9 and 8 types of faults, respectively.

Suggested Citation

  • Doaa A. Altantawy & Mohamed A. Yakout, 2025. "Sparse deep encoded features with enhanced sinogramic red deer optimization for fault inspection in wafer maps," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3359-3397, June.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02377-4
    DOI: 10.1007/s10845-024-02377-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02377-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02377-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan Sun & Qifan Song & Faming Liang, 2022. "Consistent Sparse Deep Learning: Theory and Computation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1981-1995, October.
    2. Cheng Hao Jin & Hyun-Jin Kim & Yongjun Piao & Meijing Li & Minghao Piao, 2020. "Wafer map defect pattern classification based on convolutional neural network features and error-correcting output codes," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1861-1875, December.
    3. Tongwha Kim & Kamran Behdinan, 2023. "Advances in machine learning and deep learning applications towards wafer map defect recognition and classification: a review," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3215-3247, December.
    4. Ayesha Sohail, 2023. "Genetic Algorithms in the Fields of Artificial Intelligence and Data Sciences," Annals of Data Science, Springer, vol. 10(4), pages 1007-1018, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Wang & Songhao Wang & Ben Niu, 2025. "Shape prior guided defect pattern classification and segmentation in wafer bin maps," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 319-330, January.
    2. Muhammad Tahir & Sufyan Ali & Ayesha Sohail & Ying Zhang & Xiaohua Jin, 2024. "Unlocking Online Insights: LSTM Exploration and Transfer Learning Prospects," Annals of Data Science, Springer, vol. 11(4), pages 1421-1434, August.
    3. E. Subha & V. Jothi Prakash & S. Arul Antran Vijay, 2025. "A novel arctic fox survival strategy inspired optimization algorithm," Journal of Combinatorial Optimization, Springer, vol. 49(1), pages 1-73, January.
    4. Chengjun Xu & Guobin Zhu, 2021. "Intelligent manufacturing Lie Group Machine Learning: real-time and efficient inspection system based on fog computing," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 237-249, January.
    5. Shouhong Chen & Zhentao Huang & Tao Wang & Xingna Hou & Jun Ma, 2025. "Wafer map defect recognition based on multi-scale feature fusion and attention spatial pyramid pooling," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 271-284, January.
    6. Chia-Yu Hsu & Ju-Chien Chien, 2022. "Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 831-844, March.
    7. Minghao Piao & Cheng Hao Jin, 2023. "CNN and ensemble learning based wafer map failure pattern recognition based on local property based features," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3599-3621, December.
    8. Minyoung Lee & Joohyoung Jeon & Hongchul Lee, 2022. "Explainable AI for domain experts: a post Hoc analysis of deep learning for defect classification of TFT–LCD panels," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1747-1759, August.
    9. Tongwha Kim & Kamran Behdinan, 2023. "Advances in machine learning and deep learning applications towards wafer map defect recognition and classification: a review," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3215-3247, December.
    10. Lei Guo & Zhengcong Duan & Wanjin Guo & Kai Ding & Chul-Hee Lee & Felix T. S. Chan, 2024. "Machine vision-based recognition of elastic abrasive tool wear and its influence on machining performance," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 4201-4216, December.
    11. Feng Huang & Ben-wu Wang & Qi-peng Li & Jun Zou, 2023. "Texture surface defect detection of plastic relays with an enhanced feature pyramid network," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1409-1425, March.
    12. Insung Baek & Sung Jin Hwang & Seoung Bum Kim, 2025. "CowSSL: contrastive open-world semi-supervised learning for wafer bin map," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2163-2175, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02377-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.