IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i4d10.1007_s10845-021-01877-x.html
   My bibliography  Save this article

Improved multi-core arithmetic optimization algorithm-based ensemble mutation for multidisciplinary applications

Author

Listed:
  • Laith Abualigah

    (Amman Arab University
    Universiti Sains Malaysia)

  • Ali Diabat

    (New York University Abu Dhabi
    New York University)

Abstract

This paper proposes a new search method based on an augmented version of the Arithmetic Optimization Algorithm to solve various benchmark functions, engineering design cases, and feature selection problems. The proposed method is called MCAOA, combined with the Marine Predators Algorithm and a new proposed Ensemble Mutation Strategy. The Arithmetic Optimization Algorithm is a new meta-heuristic technique used to solve optimization problems. Sometimes, Arithmetic Optimization Algorithm faces convergence problems and falls into local optima for specific optimization problems, especially large-scale and multimodal problems. The Marine Predators Algorithm and Ensemble Mutation Strategy improve the Arithmetic Optimization Algorithm’s convergence rate and equilibrium in the exploration and exploitation search methods. The proposed method is tested on 23 different benchmark functions, seven common engineering design cases, and sixteen feature selection problems. The obtained results are compared with other well-known and state-of-the-art methods. The experimental results indicated that the proposed method found new best solutions for different complicated problems; the general performance is promising compared to other comparative methods.

Suggested Citation

  • Laith Abualigah & Ali Diabat, 2023. "Improved multi-core arithmetic optimization algorithm-based ensemble mutation for multidisciplinary applications," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1833-1874, April.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01877-x
    DOI: 10.1007/s10845-021-01877-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01877-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01877-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Zhang & Dexuan Zou & Xin Shen, 2018. "A Novel Simple Particle Swarm Optimization Algorithm for Global Optimization," Mathematics, MDPI, vol. 6(12), pages 1-34, November.
    2. Mohammed A. A. Al-qaness & Ahmed A. Ewees & Hong Fan & Laith Abualigah & Mohamed Abd Elaziz, 2020. "Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea," IJERPH, MDPI, vol. 17(10), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thavavel Vaiyapuri & Sharath Kumar Jagannathan & Mohammed Altaf Ahmed & K. C. Ramya & Gyanendra Prasad Joshi & Soojeong Lee & Gangseong Lee, 2023. "Sustainable Artificial Intelligence-Based Twitter Sentiment Analysis on COVID-19 Pandemic," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    2. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    3. Zhou, Wenhao & Li, Hailin & Zhang, Zhiwei, 2022. "A novel seasonal fractional grey model for predicting electricity demand: A case study of Zhejiang in China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 128-147.
    4. Qiang Yang & Yufei Jing & Xudong Gao & Dongdong Xu & Zhenyu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "Predominant Cognitive Learning Particle Swarm Optimization for Global Numerical Optimization," Mathematics, MDPI, vol. 10(10), pages 1-35, May.
    5. Abidhan Bardhan & Raushan Kumar Singh & Sufyan Ghani & Gerasimos Konstantakatos & Panagiotis G. Asteris, 2023. "Modelling Soil Compaction Parameters Using an Enhanced Hybrid Intelligence Paradigm of ANFIS and Improved Grey Wolf Optimiser," Mathematics, MDPI, vol. 11(14), pages 1-23, July.
    6. Dusmurod Kilichev & Wooseong Kim, 2023. "Hyperparameter Optimization for 1D-CNN-Based Network Intrusion Detection Using GA and PSO," Mathematics, MDPI, vol. 11(17), pages 1-31, August.
    7. Khizer Mehmood & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Zeshan Aslam Khan & Muhammad Asif Zahoor Raja & Ahmad H. Milyani & Abdulellah Alsulami, 2023. "Design of Nonlinear Marine Predator Heuristics for Hammerstein Autoregressive Exogenous System Identification with Key-Term Separation," Mathematics, MDPI, vol. 11(11), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01877-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.