IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i2d10.1007_s10845-018-01460-x.html
   My bibliography  Save this article

Optimization of cutting conditions using an evolutive online procedure

Author

Listed:
  • Antonio Del Prete

    (Università del Salento)

  • Rodolfo Franchi

    (Università del Salento)

  • Stefania Cacace

    (Politecnico di Milano)

  • Quirico Semeraro

    (Politecnico di Milano)

Abstract

This paper proposes an online evolutive procedure to optimize the Material Removal Rate in a turning process considering a stochastic constraint. The usual industrial approach in finishing operations is to change the tool insert at the end of each machining feature to avoid defective parts. Consequently, all parts are produced at highly conservative conditions (low levels of feed and speed), and therefore, at low productivity. In this work, a framework to estimate the stochastic constraint of tool wear during the production of a batch is proposed. A simulation campaign was carried out to evaluate the performances of the proposed procedure. The results showed that it was possible to improve the Material Removal Rate during the production of the batch and keeping the probability of defective parts under a desired level.

Suggested Citation

  • Antonio Del Prete & Rodolfo Franchi & Stefania Cacace & Quirico Semeraro, 2020. "Optimization of cutting conditions using an evolutive online procedure," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 481-499, February.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:2:d:10.1007_s10845-018-01460-x
    DOI: 10.1007/s10845-018-01460-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-01460-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-01460-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doriana M. D’Addona & A. M. M. Sharif Ullah & D. Matarazzo, 2017. "Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1285-1301, August.
    2. E Angün & J Kleijnen & D den Hertog & G Gürkan, 2009. "Response surface methodology with stochastic constraints for expensive simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 735-746, June.
    3. Nurezayana Zainal & Azlan Mohd Zain & Nor Haizan Mohamed Radzi & Muhamad Razib Othman, 2016. "Glowworm swarm optimization (GSO) for optimization of machining parameters," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 797-804, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Armillotta, 2021. "On the role of complexity in machining time estimation," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2281-2299, December.
    2. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    3. Pauline Ong & Chon Haow Chong & Mohammad Zulafif Rahim & Woon Kiow Lee & Chee Kiong Sia & Muhammad Ariff Haikal Ahmad, 2020. "Intelligent approach for process modelling and optimization on electrical discharge machining of polycrystalline diamond," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 227-247, January.
    4. Yaxuan Liu, 2021. "Developing the network social media in graphic design based on artificial neural network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(4), pages 640-653, August.
    5. Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
    6. N. A. Fountas & R. Benhadj-Djilali & C. I. Stergiou & N. M. Vaxevanidis, 2019. "An integrated framework for optimizing sculptured surface CNC tool paths based on direct software object evaluation and viral intelligence," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1581-1599, April.
    7. Andres Bustillo & Danil Yu. Pimenov & Mozammel Mia & Wojciech Kapłonek, 2021. "Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 895-912, March.
    8. Pauline Ong & Choon Sin Ho & Desmond Daniel Vui Sheng Chin & Chee Kiong Sia & Chuan Huat Ng & Md Saidin Wahab & Abduladim Salem Bala, 2019. "Diameter prediction and optimization of hot extrusion-synthesized polypropylene filament using statistical and soft computing techniques," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1957-1972, April.
    9. Danil Yu Pimenov & Andres Bustillo & Szymon Wojciechowski & Vishal S. Sharma & Munish K. Gupta & Mustafa Kuntoğlu, 2023. "Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2079-2121, June.
    10. Maciej Grzenda & Andres Bustillo, 2019. "Semi-supervised roughness prediction with partly unlabeled vibration data streams," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 933-945, February.
    11. Raghav Prasad Parouha & Pooja Verma, 2022. "An innovative hybrid algorithm for bound-unconstrained optimization problems and applications," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1273-1336, June.
    12. Neeraj Kumar Bhoi & Harpreet Singh & Saurabh Pratap & Pramod K. Jain, 2022. "Chemical reaction optimization algorithm for machining parameter of abrasive water jet cutting," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 350-363, March.
    13. Yongmao Xiao & Wei Yan & Ruping Wang & Zhigang Jiang & Ying Liu, 2021. "Research on Blank Optimization Design Based on Low-Carbon and Low-Cost Blank Process Route Optimization Model," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    14. Chayma Sellami & Carlos Miranda & Ahmed Samet & Mohamed Anis Bach Tobji & François de Beuvron, 2020. "On mining frequent chronicles for machine failure prediction," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1019-1035, April.
    15. M Laguna & J Molina & F Pérez & R Caballero & A G Hernández-Díaz, 2010. "The challenge of optimizing expensive black boxes: a scatter search/rough set theory approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 53-67, January.
    16. Kuo-Hao Chang & L. Jeff Hong & Hong Wan, 2013. "Stochastic Trust-Region Response-Surface Method (STRONG)---A New Response-Surface Framework for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 230-243, May.
    17. Woong-Gi Kim & Namhyuk Ham & Jae-Jun Kim, 2021. "Enhanced Subcontractors Allocation for Apartment Construction Project Applying Conceptual 4D Digital Twin Framework," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    18. Daniele Marini & Jonathan R. Corney, 2021. "Concurrent optimization of process parameters and product design variables for near net shape manufacturing processes," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 611-631, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:2:d:10.1007_s10845-018-01460-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.