IDEAS home Printed from
   My bibliography  Save this article

The lattice structure of the set of stable outcomes of the multiple partners assignment game


  • Marilda Sotomayor

    () (Department of Economics, Universidade de Sao Paulo, Av. Prof. Luciano Gualberto 908, Cidade Universitaria, Sao Paulo - 05508-900, Brazil)


The Multiple Partners assignment game is a natural extension of the Shapley and Shubik Assignment Game (Shapley and Shubik, 1972) to the case where the participants can form more than one partnership. In Sotomayor (1992) the existence of stable outcomes was proved. For the sake of completeness the proof is reproduced in Appendix I. In this paper we show that, as in the Assignment Game, stable payoffs form a complete lattice and hence there exists a unique optimal stable payoff for each side of the market. We also observe a polarization of interests between the two sides of the matching, within the whole set of stable payoffs. Our proofs differ technically from the Shapley and Shubik's proofs since they depend on a central result (Theorem 1) which has no parallel in the Assignment model.

Suggested Citation

  • Marilda Sotomayor, 1999. "The lattice structure of the set of stable outcomes of the multiple partners assignment game," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 567-583.
  • Handle: RePEc:spr:jogath:v:28:y:1999:i:4:p:567-583 Note: Received: June 1996/Revised version: February 1999

    Download full text from publisher

    File URL:
    Download Restriction: Access to the full text of the articles in this series is restricted

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Demange, Gabrielle & Gale, David, 1985. "The Strategy Structure of Two-sided Matching Markets," Econometrica, Econometric Society, vol. 53(4), pages 873-888, July.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:28:y:1999:i:4:p:567-583. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.