IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i2d10.1007_s10898-023-01352-2.html
   My bibliography  Save this article

Determining solution set of nonlinear inequalities using space-filling curves for finding working spaces of planar robots

Author

Listed:
  • Daniela Lera

    (Università di Cagliari)

  • Maria Chiara Nasso

    (Università della Calabria)

  • Mikhail Posypkin

    (Federal Research Center Computer Science and Control of Russian Academy of Sciences)

  • Yaroslav D. Sergeyev

    (Lobachevskiy State University of Nizhni Novgorod)

Abstract

In this paper, the problem of approximating and visualizing the solution set of systems of nonlinear inequalities is considered. It is supposed that left-hand parts of the inequalities can be multiextremal and non-differentiable. Thus, traditional local methods using gradients cannot be applied in these circumstances. Problems of this kind arise in many scientific applications, in particular, in finding working spaces of robots where it is necessary to determine not one but all the solutions of the system of nonlinear inequalities. Global optimization algorithms can be taken as an inspiration for developing methods for solving this problem. In this article, two new methods using two different approximations of Peano–Hilbert space-filling curves actively used in global optimization are proposed. Convergence conditions of the new methods are established. Numerical experiments executed on problems regarding finding the working spaces of several robots show a promising performance of the new algorithms.

Suggested Citation

  • Daniela Lera & Maria Chiara Nasso & Mikhail Posypkin & Yaroslav D. Sergeyev, 2024. "Determining solution set of nonlinear inequalities using space-filling curves for finding working spaces of planar robots," Journal of Global Optimization, Springer, vol. 89(2), pages 415-434, June.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:2:d:10.1007_s10898-023-01352-2
    DOI: 10.1007/s10898-023-01352-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01352-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01352-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuri Evtushenko & Mikhail Posypkin & Larisa Rybak & Andrei Turkin, 2018. "Approximating a solution set of nonlinear inequalities," Journal of Global Optimization, Springer, vol. 71(1), pages 129-145, May.
    2. Lera, Daniela & Posypkin, Mikhail & Sergeyev, Yaroslav D., 2021. "Space-filling curves for numerical approximation and visualization of solutions to systems of nonlinear inequalities with applications in robotics," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    3. Antanas Žilinskas & Julius Žilinskas, 2013. "A hybrid global optimization algorithm for non-linear least squares regression," Journal of Global Optimization, Springer, vol. 56(2), pages 265-277, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Usama Khaled & Ali M. Eltamaly & Abderrahmane Beroual, 2017. "Optimal Power Flow Using Particle Swarm Optimization of Renewable Hybrid Distributed Generation," Energies, MDPI, vol. 10(7), pages 1-14, July.
    2. Christopher M. Cotnoir & Balša Terzić, 2017. "Decoupling linear and nonlinear regimes: an evaluation of efficiency for nonlinear multidimensional optimization," Journal of Global Optimization, Springer, vol. 68(3), pages 663-675, July.
    3. Remigijus Paulavičius & Yaroslav Sergeyev & Dmitri Kvasov & Julius Žilinskas, 2014. "Globally-biased Disimpl algorithm for expensive global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 545-567, July.
    4. Remigijus Paulavičius & Julius Žilinskas, 2014. "Simplicial Lipschitz optimization without the Lipschitz constant," Journal of Global Optimization, Springer, vol. 59(1), pages 23-40, May.
    5. Antanas Žilinskas & James Calvin, 2019. "Bi-objective decision making in global optimization based on statistical models," Journal of Global Optimization, Springer, vol. 74(4), pages 599-609, August.
    6. Mikhail Posypkin & Oleg Khamisov, 2021. "Automatic Convexity Deduction for Efficient Function’s Range Bounding," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    7. Lera, Daniela & Posypkin, Mikhail & Sergeyev, Yaroslav D., 2021. "Space-filling curves for numerical approximation and visualization of solutions to systems of nonlinear inequalities with applications in robotics," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    8. Naveed Ishtiaq Chaudhary & Muhammad Asif Zahoor Raja & Zeshan Aslam Khan & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Hierarchical Quasi-Fractional Gradient Descent Method for Parameter Estimation of Nonlinear ARX Systems Using Key Term Separation Principle," Mathematics, MDPI, vol. 9(24), pages 1-14, December.
    9. Yaroslav D. Sergeyev & Maria Chiara Nasso & Daniela Lera, 2024. "Numerical methods using two different approximations of space-filling curves for black-box global optimization," Journal of Global Optimization, Springer, vol. 88(3), pages 707-722, March.
    10. Daniela Lera & Yaroslav D. Sergeyev, 2018. "GOSH: derivative-free global optimization using multi-dimensional space-filling curves," Journal of Global Optimization, Springer, vol. 71(1), pages 193-211, May.
    11. James Calvin & Gražina Gimbutienė & William O. Phillips & Antanas Žilinskas, 2018. "On convergence rate of a rectangular partition based global optimization algorithm," Journal of Global Optimization, Springer, vol. 71(1), pages 165-191, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:2:d:10.1007_s10898-023-01352-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.