IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v87y2023i2d10.1007_s10898-022-01180-w.html
   My bibliography  Save this article

A proximal alternating minimization algorithm for the largest C-eigenvalue of piezoelectric-type tensors

Author

Listed:
  • Wenjie Wang

    (Qufu Normal University)

  • Haibin Chen

    (Qufu Normal University)

  • Yiju Wang

    (Qufu Normal University)

  • Guanglu Zhou

    (Curtin University)

Abstract

C-eigenvalues of piezoelectric-type tensors play an important role in piezoelectric effect and converse piezoelectric effect. While the largest C-eigenvalue of a given piezoelectric-type tensor has concrete physical meaning which determines the highest piezoelectric coupling constant. In this paper, we focus on computing the maximum C-eigenvalue of piezoelectric-type tensors which is a third degree polynomial problem. To do that, we first establish the equivalence between the proposed polynomial optimization problem (POP) and a multi-linear optimization problem (MOP) under conditions that the original objective function is concave. Then, an augmented POP (which can also be regarded as a regularized POP) is introduced for the purpose to guarantee the concavity of the underlying objective function. Theoretically, both the augmented POP and the original problem share the same optimal solutions when the compact sets are specified as unit spheres. By exploiting the multi-block structure of the resulting MOP, we accordingly propose a proximal alternating minimization algorithm to get an approximate optimal value of the maximum C-eigenvalue. Furthermore, convergence of the proposed algorithm is established under mild conditions. Finally, some preliminary computational results on synthetic data sets are reported to show the efficiency of the proposed algorithm.

Suggested Citation

  • Wenjie Wang & Haibin Chen & Yiju Wang & Guanglu Zhou, 2023. "A proximal alternating minimization algorithm for the largest C-eigenvalue of piezoelectric-type tensors," Journal of Global Optimization, Springer, vol. 87(2), pages 405-422, November.
  • Handle: RePEc:spr:jglopt:v:87:y:2023:i:2:d:10.1007_s10898-022-01180-w
    DOI: 10.1007/s10898-022-01180-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01180-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01180-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
    2. Li, Chaoqian & Liu, Yajun & Li, Yaotang, 2019. "C-eigenvalues intervals for piezoelectric-type tensors," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 244-250.
    3. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2018. "Copositive tensor detection and its applications in physics and hypergraphs," Computational Optimization and Applications, Springer, vol. 69(1), pages 133-158, January.
    4. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2017. "Copositivity Detection of Tensors: Theory and Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 746-761, September.
    5. Sheng-Long Hu & Zheng-Hai Huang, 2011. "Alternating direction method for bi-quadratic programming," Journal of Global Optimization, Springer, vol. 51(3), pages 429-446, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haibin Chen & Hongjin He & Yiju Wang & Guanglu Zhou, 2022. "An efficient alternating minimization method for fourth degree polynomial optimization," Journal of Global Optimization, Springer, vol. 82(1), pages 83-103, January.
    2. Xue-Li Bai & Zheng-Hai Huang & Xia Li, 2019. "Stability of Solutions and Continuity of Solution Maps of Tensor Complementarity Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(02), pages 1-19, April.
    3. Yisheng Song & Xudong Li, 2022. "Copositivity for a Class of Fourth-Order Symmetric Tensors Given by Scalar Dark Matter," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 334-346, October.
    4. Zheng-Hai Huang & Liqun Qi, 2019. "Tensor Complementarity Problems—Part I: Basic Theory," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 1-23, October.
    5. Zheng-Hai Huang & Liqun Qi, 2019. "Tensor Complementarity Problems—Part III: Applications," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 771-791, December.
    6. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    7. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    8. Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.
    9. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    10. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    11. Jeffrey Christiansen & Brian Dandurand & Andrew Eberhard & Fabricio Oliveira, 2023. "A study of progressive hedging for stochastic integer programming," Computational Optimization and Applications, Springer, vol. 86(3), pages 989-1034, December.
    12. Paul Tseng, 2004. "An Analysis of the EM Algorithm and Entropy-Like Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 27-44, February.
    13. Omer, E. & Guetta, R. & Ioslovich, I. & Gutman, P.O. & Borshchevsky, M., 2008. "“Energy Tower” combined with pumped storage and desalination: Optimal design and analysis," Renewable Energy, Elsevier, vol. 33(4), pages 597-607.
    14. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    15. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    16. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    17. Fang, Kuangnan & Wang, Xiaoyan & Shia, Ben-Chang & Ma, Shuangge, 2016. "Identification of proportionality structure with two-part models using penalization," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 12-24.
    18. Z. John Daye & Jinbo Chen & Hongzhe Li, 2012. "High-Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis," Biometrics, The International Biometric Society, vol. 68(1), pages 316-326, March.
    19. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2015. "Optimal Replenishment Order Placement in a Finite Time Horizon," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1078-1089, March.
    20. Griveau-Billion, Théophile & Richard, Jean-Charles & Roncalli, Thierry, 2013. "A Fast Algorithm for Computing High-dimensional Risk Parity Portfolios," MPRA Paper 49822, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:87:y:2023:i:2:d:10.1007_s10898-022-01180-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.