IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v82y2022i2d10.1007_s10898-021-01072-5.html
   My bibliography  Save this article

Hidden invariant convexity for global and conic-intersection optimality guarantees in discrete-time optimal control

Author

Listed:
  • Jorn H. Baayen

    (KISTERS Group, Business Unit Water
    University of Amsterdam)

  • Krzysztof Postek

    (Delft University of Technology)

Abstract

Non-convex discrete-time optimal control problems in, e.g., water or power systems, typically involve a large number of variables related through nonlinear equality constraints. The ideal goal is to find a globally optimal solution, and numerical experience indicates that algorithms aiming for Karush–Kuhn–Tucker points often find solutions that are indistinguishable from global optima. In our paper, we provide a theoretical underpinning for this phenomenon, showing that on a broad class of problems the objective can be shown to be an invariant convex function (invex function) of the control decision variables when state variables are eliminated using implicit function theory. In this way, optimality guarantees can be obtained, the exact nature of which depends on the position of the solution within the feasible set. In a numerical example, we show how high-quality solutions are obtained with local search for a river control problem where invexity holds.

Suggested Citation

  • Jorn H. Baayen & Krzysztof Postek, 2022. "Hidden invariant convexity for global and conic-intersection optimality guarantees in discrete-time optimal control," Journal of Global Optimization, Springer, vol. 82(2), pages 263-281, February.
  • Handle: RePEc:spr:jglopt:v:82:y:2022:i:2:d:10.1007_s10898-021-01072-5
    DOI: 10.1007/s10898-021-01072-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01072-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01072-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghaddar, Bissan & Claeys, Mathieu & Mevissen, Martin & Eck, Bradley J., 2017. "Polynomial optimization for water networks: Global solutions for the valve setting problem," European Journal of Operational Research, Elsevier, vol. 261(2), pages 450-459.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    2. Pham Duc Dai, 2023. "A Real Time Optimization Based Sequential Convex Program for Pressure Management in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4751-4768, September.
    3. Selek, István & Ikonen, Enso, 2019. "Role of specific energy in decomposition of time-invariant least-cost reservoir filling problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 565-573.
    4. Nerantzis, Dimitrios & Pecci, Filippo & Stoianov, Ivan, 2020. "Optimal control of water distribution networks without storage," European Journal of Operational Research, Elsevier, vol. 284(1), pages 345-354.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:82:y:2022:i:2:d:10.1007_s10898-021-01072-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.