IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v77y2020i3d10.1007_s10898-020-00879-y.html
   My bibliography  Save this article

Doubly nonnegative relaxations are equivalent to completely positive reformulations of quadratic optimization problems with block-clique graph structures

Author

Listed:
  • Sunyoung Kim

    (Ewha W. University)

  • Masakazu Kojima

    (Chuo University)

  • Kim-Chuan Toh

    (National University of Singapore)

Abstract

We study the equivalence among a nonconvex QOP, its CPP and DNN relaxations under the assumption that the aggregate and correlative sparsity of the data matrices of the CPP relaxation is represented by a block-clique graph G. By exploiting the correlative sparsity, we decompose the CPP relaxation problem into a clique-tree structured family of smaller subproblems. Each subproblem is associated with a node of a clique tree of G. The optimal value can be obtained by applying an algorithm that we propose for solving the subproblems recursively from leaf nodes to the root node of the clique-tree. We establish the equivalence between the QOP and its DNN relaxation from the equivalence between the reduced family of subproblems and their DNN relaxations by applying the known results on: (1) CPP and DNN reformulation of a class of QOPs with linear equality, complementarity and binary constraints in 3 nonnegative variables. (2) DNN reformulation of a class of quadratically constrained convex QOPs with any size. (3) DNN reformulation of LPs with any size. As a result, we show that a QOP whose subproblems are the QOPs mentioned in (1), (2) and (3) is equivalent to its DNN relaxation, if the subproblems form a clique-tree structured family induced from a block-clique graph.

Suggested Citation

  • Sunyoung Kim & Masakazu Kojima & Kim-Chuan Toh, 2020. "Doubly nonnegative relaxations are equivalent to completely positive reformulations of quadratic optimization problems with block-clique graph structures," Journal of Global Optimization, Springer, vol. 77(3), pages 513-541, July.
  • Handle: RePEc:spr:jglopt:v:77:y:2020:i:3:d:10.1007_s10898-020-00879-y
    DOI: 10.1007/s10898-020-00879-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00879-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00879-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naohiko Arima & Sunyoung Kim & Masakazu Kojima & Kim-Chuan Toh, 2017. "A robust Lagrangian-DNN method for a class of quadratic optimization problems," Computational Optimization and Applications, Springer, vol. 66(3), pages 453-479, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markus Gabl, 2023. "Sparse conic reformulation of structured QCQPs based on copositive optimization with applications in stochastic optimization," Journal of Global Optimization, Springer, vol. 87(1), pages 221-254, September.
    2. Sunyoung Kim & Masakazu Kojima, 2025. "Equivalent sufficient conditions for global optimality of quadratically constrained quadratic programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 101(1), pages 73-94, February.
    3. E. Alper Yıldırım, 2022. "An alternative perspective on copositive and convex relaxations of nonconvex quadratic programs," Journal of Global Optimization, Springer, vol. 82(1), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuzhu Wang & Akihiro Tanaka & Akiko Yoshise, 2021. "Polyhedral approximations of the semidefinite cone and their application," Computational Optimization and Applications, Springer, vol. 78(3), pages 893-913, April.
    2. N. Ito & S. Kim & M. Kojima & A. Takeda & K.-C. Toh, 2018. "Equivalences and differences in conic relaxations of combinatorial quadratic optimization problems," Journal of Global Optimization, Springer, vol. 72(4), pages 619-653, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:77:y:2020:i:3:d:10.1007_s10898-020-00879-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.