IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v58y2014i3p465-480.html
   My bibliography  Save this article

A Semidefinite Programming approach for solving Multiobjective Linear Programming

Author

Listed:
  • Victor Blanco
  • Justo Puerto
  • Safae El Haj Ben Ali

Abstract

Several algorithms are available in the literature for finding the entire set of Pareto-optimal solutions of Multiobjective Linear Programmes (MOLPs). However, all of them are based on active-set methods (simplex-like approaches). We present a different method, based on a transformation of any MOLP into a unique lifted Semidefinite Program (SDP), the solutions of which encode the entire set of Pareto-optimal extreme point solutions of any MOLP. This SDP problem can be solved, among other algorithms, by interior point methods; thus unlike an active set-method, our method provides a new approach to find the set of Pareto-optimal solutions of MOLP. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Victor Blanco & Justo Puerto & Safae El Haj Ben Ali, 2014. "A Semidefinite Programming approach for solving Multiobjective Linear Programming," Journal of Global Optimization, Springer, vol. 58(3), pages 465-480, March.
  • Handle: RePEc:spr:jglopt:v:58:y:2014:i:3:p:465-480
    DOI: 10.1007/s10898-013-0056-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-013-0056-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-013-0056-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jörg Fliege, 2004. "Gap-free computation of Pareto-points by quadratic scalarizations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(1), pages 69-89, February.
    2. Matthias Ehrgott & Andreas Löhne & Lizhen Shao, 2012. "A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming," Journal of Global Optimization, Springer, vol. 52(4), pages 757-778, April.
    3. Jörg Fliege, 2006. "An Efficient Interior-Point Method for Convex Multicriteria Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 825-845, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yarui Duan & Liguo Jiao & Pengcheng Wu & Yuying Zhou, 2022. "Existence of Pareto Solutions for Vector Polynomial Optimization Problems with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 148-171, October.
    2. Jae Hyoung Lee & Nithirat Sisarat & Liguo Jiao, 2021. "Multi-objective convex polynomial optimization and semidefinite programming relaxations," Journal of Global Optimization, Springer, vol. 80(1), pages 117-138, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jörg Fliege & Huifu Xu, 2011. "Stochastic Multiobjective Optimization: Sample Average Approximation and Applications," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 135-162, October.
    2. Vahid Morovati & Hadi Basirzadeh & Latif Pourkarimi, 2018. "Quasi-Newton methods for multiobjective optimization problems," 4OR, Springer, vol. 16(3), pages 261-294, September.
    3. J. Fliege & L. N. Vicente, 2006. "Multicriteria Approach to Bilevel Optimization," Journal of Optimization Theory and Applications, Springer, vol. 131(2), pages 209-225, November.
    4. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    5. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    6. Daniel Ciripoi & Andreas Löhne & Benjamin Weißing, 2018. "A vector linear programming approach for certain global optimization problems," Journal of Global Optimization, Springer, vol. 72(2), pages 347-372, October.
    7. Mounir El Maghri & Youssef Elboulqe, 2018. "Reduced Jacobian Method," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 917-943, December.
    8. László Csirmaz, 2016. "Using multiobjective optimization to map the entropy region," Computational Optimization and Applications, Springer, vol. 63(1), pages 45-67, January.
    9. Nghe, Philippe & Mulder, Bela M. & Tans, Sander J., 2018. "A graph-based algorithm for the multi-objective optimization of gene regulatory networks," European Journal of Operational Research, Elsevier, vol. 270(2), pages 784-793.
    10. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    11. Zachary Feinstein & Birgit Rudloff, 2017. "A recursive algorithm for multivariate risk measures and a set-valued Bellman’s principle," Journal of Global Optimization, Springer, vol. 68(1), pages 47-69, May.
    12. Jörg Fliege, 2006. "An Efficient Interior-Point Method for Convex Multicriteria Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 825-845, November.
    13. Johan M. Bogoya & Andrés Vargas & Oliver Schütze, 2019. "The Averaged Hausdorff Distances in Multi-Objective Optimization: A Review," Mathematics, MDPI, vol. 7(10), pages 1-35, September.
    14. Britta Schulze & Kathrin Klamroth & Michael Stiglmayr, 2019. "Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions," Journal of Global Optimization, Springer, vol. 74(3), pages 495-522, July.
    15. Koenen, Melissa & Balvert, Marleen & Fleuren, H.A., 2023. "A Renewed Take on Weighted Sum in Sandwich Algorithms : Modification of the Criterion Space," Discussion Paper 2023-012, Tilburg University, Center for Economic Research.
    16. Kellner, Florian & Lienland, Bernhard & Utz, Sebastian, 2019. "An a posteriori decision support methodology for solving the multi-criteria supplier selection problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 505-522.
    17. Piercy, Craig A. & Steuer, Ralph E., 2019. "Reducing wall-clock time for the computation of all efficient extreme points in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 277(2), pages 653-666.
    18. Koenen, Melissa & Balvert, Marleen & Fleuren, H.A., 2023. "A Renewed Take on Weighted Sum in Sandwich Algorithms : Modification of the Criterion Space," Other publications TiSEM 795b6c0c-c7bc-4ced-9d6b-a, Tilburg University, School of Economics and Management.
    19. Fliege, Jörg & Werner, Ralf, 2014. "Robust multiobjective optimization & applications in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 422-433.
    20. Zachary Feinstein & Birgit Rudloff, 2015. "A recursive algorithm for multivariate risk measures and a set-valued Bellman's principle," Papers 1508.02367, arXiv.org, revised Jul 2016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:58:y:2014:i:3:p:465-480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.