A comparative study of automated undergraduate engineering admission prediction in an Indian university using machine learning
Author
Abstract
Suggested Citation
DOI: 10.1007/s42001-025-00384-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Edin Osmanbegovic & Mirza Suljic, 2012. "Data Mining Approach For Predicting Student Performance," Economic Review: Journal of Economics and Business, University of Tuzla, Faculty of Economics, vol. 10(1), pages 3-12.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Anjeela Jokhan & Aneesh A. Chand & Vineet Singh & Kabir A. Mamun, 2022. "Increased Digital Resource Consumption in Higher Educational Institutions and the Artificial Intelligence Role in Informing Decisions Related to Student Performance," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
- Deepti Aggarwal & Sonu Mittal & Vikram Bali, 2021. "Significance of Non-Academic Parameters for Predicting Student Performance Using Ensemble Learning Techniques," International Journal of System Dynamics Applications (IJSDA), IGI Global, vol. 10(3), pages 38-49, July.
- Alisa Bilal Zorić, 2020. "Predicting Students’ Academic Performance Based on Enrolment Data," International Journal of Innovation and Economic Development, Inovatus Services Ltd., vol. 6(4), pages 54-61, October.
- Bilal Zorić, Alisa, 2019. "Predicting Students’ Success Using Neural Networks," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2019), Rovinj, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 12-14 September 2019, pages 58-66, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
- January D. Febro & Jocelyn Barbosa, 2017. "Mining student at risk in higher education using predictive models," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 3(4), pages 117-132.
More about this item
Keywords
Undergraduate admission; Exploratory data analysis; Engineering; Machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:8:y:2025:i:3:d:10.1007_s42001-025-00384-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.