IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v43y2022i2d10.1007_s10878-021-00769-3.html
   My bibliography  Save this article

Solving $$(k-1)$$ ( k - 1 ) -stable instances of k-terminal cut with isolating cuts

Author

Listed:
  • Mark Velednitsky

    (University of California)

Abstract

The k-terminal cut problem, also known as the multiterminal cut problem, is defined on an edge-weighted graph with k distinct vertices called “terminals.” The goal is to remove a minimum weight collection of edges from the graph such that there is no path between any pair of terminals. The problem is APX-hard. Isolating cuts are minimum cuts which separate one terminal from the rest. The union of all the isolating cuts, except the largest, is a $$(2-2/k)$$ ( 2 - 2 / k ) -approximation to the optimal k-terminal cut. An instance of k-terminal cut is $$\gamma $$ γ -stable if edges in the cut can be multiplied by up to $$\gamma $$ γ without changing the unique optimal solution. In this paper, we show that, in any $$(k-1)$$ ( k - 1 ) -stable instance of k-terminal cut, the source sets of the isolating cuts are the source sets of the unique optimal solution to that k-terminal cut instance. We conclude that the $$(2-2/k)$$ ( 2 - 2 / k ) -approximation algorithm returns the optimal solution on $$(k-1)$$ ( k - 1 ) -stable instances. Ours is the first result showing that this $$(2-2/k)$$ ( 2 - 2 / k ) -approximation is an exact optimization algorithm on a special class of graphs. We also show that our $$(k-1)$$ ( k - 1 ) -stability result is tight. We construct $$(k-1-\epsilon )$$ ( k - 1 - ϵ ) -stable instances of the k-terminal cut problem which only have trivial isolating cuts: that is, the source set of the isolating cuts for each terminal is just the terminal itself. Thus, the $$(2-2/k)$$ ( 2 - 2 / k ) -approximation does not return an optimal solution.

Suggested Citation

  • Mark Velednitsky, 2022. "Solving $$(k-1)$$ ( k - 1 ) -stable instances of k-terminal cut with isolating cuts," Journal of Combinatorial Optimization, Springer, vol. 43(2), pages 297-311, March.
  • Handle: RePEc:spr:jcomop:v:43:y:2022:i:2:d:10.1007_s10878-021-00769-3
    DOI: 10.1007/s10878-021-00769-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-021-00769-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-021-00769-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Velednitsky & Dorit S. Hochbaum, 0. "Isolation branching: a branch and bound algorithm for the k-terminal cut problem," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-21.
    2. David R. Karger & Philip Klein & Cliff Stein & Mikkel Thorup & Neal E. Young, 2004. "Rounding Algorithms for a Geometric Embedding of Minimum Multiway Cut," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 436-461, August.
    3. Stephen M. Robinson, 1977. "A Characterization of Stability in Linear Programming," Operations Research, INFORMS, vol. 25(3), pages 435-447, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonard Goff & Eric Mbakop, 2025. "Inference on the value of a linear program," Papers 2506.06776, arXiv.org, revised Jun 2025.
    2. Ludwig Kuntz & Stefan Scholtes, 2000. "Measuring the Robustness of Empirical Efficiency Valuations," Management Science, INFORMS, vol. 46(6), pages 807-823, June.
    3. D. T. K. Huyen & J.-C. Yao & N. D. Yen, 2024. "Characteristic sets and characteristic numbers of matrix two-person games," Journal of Global Optimization, Springer, vol. 90(1), pages 217-241, September.
    4. Niv Buchbinder & Roy Schwartz & Baruch Weizman, 2021. "Simplex Transformations and the Multiway Cut Problem," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 757-771, May.
    5. Mark Velednitsky & Dorit S. Hochbaum, 0. "Isolation branching: a branch and bound algorithm for the k-terminal cut problem," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-21.
    6. M. G. Fiestras-Janeiro & I. Garcia-Jurado & J. Puerto, 2000. "The Concept of Proper Solution in Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 106(3), pages 511-525, September.
    7. Holger Scheel & Stefan Scholtes, 2003. "Continuity of DEA Efficiency Measures," Operations Research, INFORMS, vol. 51(1), pages 149-159, February.
    8. Mark Velednitsky & Dorit S. Hochbaum, 2022. "Isolation branching: a branch and bound algorithm for the k-terminal cut problem," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1659-1679, October.
    9. C. Filippi, 2004. "An Algorithm for Approximate Multiparametric Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 120(1), pages 73-95, January.
    10. Marcel Klatt & Axel Munk & Yoav Zemel, 2022. "Limit laws for empirical optimal solutions in random linear programs," Annals of Operations Research, Springer, vol. 315(1), pages 251-278, August.
    11. Lamb, John D. & Tee, Kai-Hong, 2012. "Resampling DEA estimates of investment fund performance," European Journal of Operational Research, Elsevier, vol. 223(3), pages 834-841.
    12. Dupacova, Jitka & Bertocchi, Marida, 2001. "From data to model and back to data: A bond portfolio management problem," European Journal of Operational Research, Elsevier, vol. 134(2), pages 261-278, October.
    13. Giorgio & Cesare, 2018. "A Tutorial on Sensitivity and Stability in Nonlinear Programming and Variational Inequalities under Differentiability Assumptions," DEM Working Papers Series 159, University of Pavia, Department of Economics and Management.
    14. Hong Liu & Peng Zhang, 2014. "On the generalized multiway cut in trees problem," Journal of Combinatorial Optimization, Springer, vol. 27(1), pages 65-77, January.
    15. Ning Zhang & Chang Fang, 2020. "Saddle point approximation approaches for two-stage robust optimization problems," Journal of Global Optimization, Springer, vol. 78(4), pages 651-670, December.
    16. Bulat Gafarov, 2019. "Simple subvector inference on sharp identified set in affine models," Papers 1904.00111, arXiv.org, revised Jul 2024.
    17. M. J. Cánovas & R. Henrion & M. A. López & J. Parra, 2016. "Outer Limit of Subdifferentials and Calmness Moduli in Linear and Nonlinear Programming," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 925-952, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:43:y:2022:i:2:d:10.1007_s10878-021-00769-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.