IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v33y2017i1d10.1007_s10878-015-9937-z.html
   My bibliography  Save this article

A PTAS for minimum weighted connected vertex cover $$P_3$$ P 3 problem in 3-dimensional wireless sensor networks

Author

Listed:
  • Limin Wang

    (Nanjing Normal University
    Nanjing University)

  • Wenxue Du

    (Anhui University)

  • Zhao Zhang

    (Zhejiang Normal University)

  • Xiaoyan Zhang

    (Nanjing Normal University
    University of Twente)

Abstract

Given a connected and weighted graph $$G=(V, E)$$ G = ( V , E ) with each vertex v having a nonnegative weight w(v), the minimum weighted connected vertex cover $$P_{3}$$ P 3 problem $$(MWCVCP_{3})$$ ( M W C V C P 3 ) is required to find a subset C of vertices of the graph with minimum total weight, such that each path with length 2 has at least one vertex in C, and moreover, the induced subgraph G[C] is connected. This kind of problem has many applications concerning wireless sensor networks and ad hoc networks. When homogeneous sensors are deployed into a three-dimensional space instead of a plane, the mathematical model for the sensor network is a unit ball graph instead of a unit disk graph. In this paper, we propose a new concept called weak c-local and give the first polynomial time approximation scheme (PTAS) for $$MWCVCP_{3}$$ M W C V C P 3 in unit ball graphs when the weight is smooth and weak c-local.

Suggested Citation

  • Limin Wang & Wenxue Du & Zhao Zhang & Xiaoyan Zhang, 2017. "A PTAS for minimum weighted connected vertex cover $$P_3$$ P 3 problem in 3-dimensional wireless sensor networks," Journal of Combinatorial Optimization, Springer, vol. 33(1), pages 106-122, January.
  • Handle: RePEc:spr:jcomop:v:33:y:2017:i:1:d:10.1007_s10878-015-9937-z
    DOI: 10.1007/s10878-015-9937-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-015-9937-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-015-9937-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xianliang Liu & Hongliang Lu & Wei Wang & Weili Wu, 2013. "PTAS for the minimum k-path connected vertex cover problem in unit disk graphs," Journal of Global Optimization, Springer, vol. 56(2), pages 449-458, June.
    2. Lidan Fan & Zhao Zhang & Wei Wang, 2011. "PTAS for minimum weighted connected vertex cover problem with c-local condition in unit disk graphs," Journal of Combinatorial Optimization, Springer, vol. 22(4), pages 663-673, November.
    3. Ding-Zhu Du & Ker-I Ko & Xiaodong Hu, 2012. "Design and Analysis of Approximation Algorithms," Springer Optimization and Its Applications, Springer, number 978-1-4614-1701-9, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lina Chen & Xiaohui Huang & Zhao Zhang, 2018. "A simpler PTAS for connected k-path vertex cover in homogeneous wireless sensor network," Journal of Combinatorial Optimization, Springer, vol. 36(1), pages 35-43, July.
    2. Raka Jovanovic & Antonio P. Sanfilippo & Stefan Voß, 2022. "Fixed set search applied to the multi-objective minimum weighted vertex cover problem," Journal of Heuristics, Springer, vol. 28(4), pages 481-508, August.
    3. Ran, Yingli & Zhang, Zhao & Huang, Xiaohui & Li, Xiaosong & Du, Ding-Zhu, 2019. "Approximation algorithms for minimum weight connected 3-path vertex cover," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 723-733.
    4. Shuli Hu & Xiaoli Wu & Huan Liu & Yiyuan Wang & Ruizhi Li & Minghao Yin, 2019. "Multi-Objective Neighborhood Search Algorithm Based on Decomposition for Multi-Objective Minimum Weighted Vertex Cover Problem," Sustainability, MDPI, vol. 11(13), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ou Sun & Neng Fan, 2019. "Solving the multistage PMU placement problem by integer programming and equivalent network design model," Journal of Global Optimization, Springer, vol. 74(3), pages 477-493, July.
    2. Lina Chen & Xiaohui Huang & Zhao Zhang, 2018. "A simpler PTAS for connected k-path vertex cover in homogeneous wireless sensor network," Journal of Combinatorial Optimization, Springer, vol. 36(1), pages 35-43, July.
    3. Zhao Zhang & Wen Xu & Weili Wu & Ding-Zhu Du, 2017. "A novel approach for detecting multiple rumor sources in networks with partial observations," Journal of Combinatorial Optimization, Springer, vol. 33(1), pages 132-146, January.
    4. Majun Shi & Zishen Yang & Wei Wang, 2023. "Greedy guarantees for minimum submodular cost submodular/non-submodular cover problem," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-16, January.
    5. Jiao Zhou & Zhao Zhang & Weili Wu & Kai Xing, 2014. "A greedy algorithm for the fault-tolerant connected dominating set in a general graph," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 310-319, July.
    6. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.
    7. Hejiao Huang & Feng Shang & Jinling Liu & Hongwei Du, 2015. "Handling least privilege problem and role mining in RBAC," Journal of Combinatorial Optimization, Springer, vol. 30(1), pages 63-86, July.
    8. Zhao Zhang & Wei Liang & Hongmin W. Du & Siwen Liu, 2022. "Constant Approximation for the Lifetime Scheduling Problem of p -Percent Coverage," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2675-2685, September.
    9. Xiaozhi Wang & Xianyue Li & Bo Hou & Wen Liu & Lidong Wu & Suogang Gao, 2021. "A greedy algorithm for the fault-tolerant outer-connected dominating set problem," Journal of Combinatorial Optimization, Springer, vol. 41(1), pages 118-127, January.
    10. Xiang Li & H. George Du & Panos M. Pardalos, 2020. "A variation of DS decomposition in set function optimization," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 36-44, July.
    11. Xiang Li & H. George Du, 2020. "A short proof for stronger version of DS decomposition in set function optimization," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 901-906, November.
    12. Chuanwen Luo & Yongcai Wang & Yi Hong & Wenping Chen & Xingjian Ding & Yuqing Zhu & Deying Li, 2019. "Minimizing data collection latency with unmanned aerial vehicle in wireless sensor networks," Journal of Combinatorial Optimization, Springer, vol. 38(4), pages 1019-1042, November.
    13. Shi, Majun & Yang, Zishen & Wang, Wei, 2021. "Minimum non-submodular cover problem with applications," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    14. Yichao He & Xinlu Zhang & Wenbin Li & Xiang Li & Weili Wu & Suogang Gao, 2016. "Algorithms for randomized time-varying knapsack problems," Journal of Combinatorial Optimization, Springer, vol. 31(1), pages 95-117, January.
    15. Zishen Yang & Wei Wang & Majun Shi, 2021. "Algorithms and Complexity for a Class of Combinatorial Optimization Problems with Labelling," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 673-695, March.
    16. Ran, Yingli & Zhang, Zhao & Huang, Xiaohui & Li, Xiaosong & Du, Ding-Zhu, 2019. "Approximation algorithms for minimum weight connected 3-path vertex cover," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 723-733.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:33:y:2017:i:1:d:10.1007_s10878-015-9937-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.