IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v42y2025i1d10.1007_s00357-024-09481-3.html
   My bibliography  Save this article

Cluster Validation Based on Fisher’s Linear Discriminant Analysis

Author

Listed:
  • Fabian Kächele

    (Institute for Operations Research, Analytics & Statistics, Karlsruhe Institute of Technology)

  • Nora Schneider

    (Institute for Operations Research, Analytics & Statistics, Karlsruhe Institute of Technology)

Abstract

Cluster analysis aims to find meaningful groups, called clusters, in data. The objects within a cluster should be similar to each other and dissimilar to objects from other clusters. The fundamental question arising is whether found clusters are “valid clusters” or not. Existing cluster validity indices are computation-intensive, make assumptions about the underlying cluster structure, or cannot detect the absence of clusters. Thus, we present a new cluster validation framework to assess the validity of a clustering and determine the underlying number of clusters $$k^*$$ k ∗ . Within the framework, we introduce a new merge criterion analyzing the data in a one-dimensional projection, which maximizes the ratio of between-cluster- variance to within-cluster-variance in the clusters. Nonetheless, other local methods can be applied as a merge criterion within the framework. Experiments on synthetic and real-world data sets show promising results for both the overall framework and the introduced merge criterion.

Suggested Citation

  • Fabian Kächele & Nora Schneider, 2025. "Cluster Validation Based on Fisher’s Linear Discriminant Analysis," Journal of Classification, Springer;The Classification Society, vol. 42(1), pages 54-71, March.
  • Handle: RePEc:spr:jclass:v:42:y:2025:i:1:d:10.1007_s00357-024-09481-3
    DOI: 10.1007/s00357-024-09481-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-024-09481-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-024-09481-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julian Rossbroich & Jeffrey Durieux & Tom F. Wilderjans, 2022. "Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 264-301, July.
    2. J. Cerdeira & M. Martins & Pedro Silva, 2012. "A Combinatorial Approach to Assess the Separability of Clusters," Journal of Classification, Springer;The Classification Society, vol. 29(1), pages 7-22, April.
    3. Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
    4. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
    5. Pena D. & Prieto F.J., 2001. "Cluster Identification Using Projections," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1433-1445, December.
    6. Junxian Geng & Anirban Bhattacharya & Debdeep Pati, 2019. "Probabilistic Community Detection With Unknown Number of Communities," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 893-905, April.
    7. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    8. Liu, Yufeng & Hayes, David Neil & Nobel, Andrew & Marron, J. S, 2008. "Statistical Significance of Clustering for High-Dimension, Low–Sample Size Data," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1281-1293.
    9. Sugar, Catherine A. & James, Gareth M., 2003. "Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 750-763, January.
    10. Volodymyr Melnykov & Semhar Michael, 2020. "Clustering Large Datasets by Merging K-Means Solutions," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 97-123, April.
    11. Aurore Delaigle & Peter Hall & Tung Pham, 2019. "Clustering functional data into groups by using projections," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 271-304, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    2. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    3. Yi Peng & Yong Zhang & Gang Kou & Yong Shi, 2012. "A Multicriteria Decision Making Approach for Estimating the Number of Clusters in a Data Set," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    4. Z. Volkovich & Z. Barzily & G.-W. Weber & D. Toledano-Kitai & R. Avros, 2012. "An application of the minimal spanning tree approach to the cluster stability problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 119-139, March.
    5. Koltcov, Sergei, 2018. "Application of Rényi and Tsallis entropies to topic modeling optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1192-1204.
    6. Andrea Cappozzo & Luis Angel García Escudero & Francesca Greselin & Agustín Mayo-Iscar, 2021. "Parameter Choice, Stability and Validity for Robust Cluster Weighted Modeling," Stats, MDPI, vol. 4(3), pages 1-14, July.
    7. Lingsong Meng & Dorina Avram & George Tseng & Zhiguang Huo, 2022. "Outcome‐guided sparse K‐means for disease subtype discovery via integrating phenotypic data with high‐dimensional transcriptomic data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 352-375, March.
    8. Fujita, André & Takahashi, Daniel Y. & Patriota, Alexandre G., 2014. "A non-parametric method to estimate the number of clusters," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 27-39.
    9. Julian Rossbroich & Jeffrey Durieux & Tom F. Wilderjans, 2022. "Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 264-301, July.
    10. Fischer, Aurélie, 2011. "On the number of groups in clustering," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1771-1781.
    11. Fang, Yixin & Wang, Junhui, 2012. "Selection of the number of clusters via the bootstrap method," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 468-477.
    12. Anis Hoayek & Didier Rullière, 2024. "Assessing clustering methods using Shannon's entropy," Post-Print hal-03812055, HAL.
    13. Dario Bruzzese & Domenico Vistocco, 2015. "DESPOTA: DEndrogram Slicing through a PemutatiOn Test Approach," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 285-304, July.
    14. Jane L. Harvill & Priya Kohli & Nalini Ravishanker, 2017. "Clustering Nonlinear, Nonstationary Time Series Using BSLEX," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 935-955, September.
    15. Z. Volkovich & D. Toledano-Kitai & G.-W. Weber, 2013. "Self-learning K-means clustering: a global optimization approach," Journal of Global Optimization, Springer, vol. 56(2), pages 219-232, June.
    16. J. Fernando Vera & Rodrigo Macías, 2017. "Variance-Based Cluster Selection Criteria in a K-Means Framework for One-Mode Dissimilarity Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 275-294, June.
    17. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    18. Fang, Yixin & Wang, Junhui, 2011. "Penalized cluster analysis with applications to family data," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2128-2136, June.
    19. Henner Gimpel & Daniel Rau & Maximilian Röglinger, 2018. "Understanding FinTech start-ups – a taxonomy of consumer-oriented service offerings," Electronic Markets, Springer;IIM University of St. Gallen, vol. 28(3), pages 245-264, August.
    20. Athanasios Constantopoulos & John Yfantopoulos & Panos Xenos & Athanassios Vozikis, 2019. "Cluster shifts based on healthcare factors: The case of Greece in an OECD background 2009-2014," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 9(6), pages 1-4.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:42:y:2025:i:1:d:10.1007_s00357-024-09481-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.