IDEAS home Printed from https://ideas.repec.org/a/spr/infott/v27y2025i3d10.1007_s40558-025-00315-5.html
   My bibliography  Save this article

Forecasting tourism demand with pre-holiday attribute

Author

Listed:
  • Yong Liu

    (Jiangnan University)

  • Xiang-jie Fu

    (Jiangnan University)

  • Jeffrey Lin Yi Forrest

    (Slippery Rock University of Pennsylvania Slippery Rock)

Abstract

Tourism demand forecasting is critical for decision-making in emergency resource allocation, and personnel management at tourist destinations. However, accurate predictions require the integration of multiple factors, such as network data of scenic areas, weather information, date-related data, and historical trends. To build a precise, robust, and generalizable forecasting model, this study introduces a novel “pre-holiday” feature for date information and employs the Transformer deep learning architecture as the core framework. The model integrates convolutional padding and serialization techniques to extract interval-based data features. Ultimately, it is designed to be applicable across diverse tourist destinations and varying forecasting time horizons, delivering end-to-end intelligent predictions—from data input to final output. Extensive ablation and comparative experiments show that the model is not only adaptable to single time-span forecasting but also achieves high-accuracy predictions for 15-day medium range forecasts. Compared with the existing mainstream research, the prediction error of the model is only 67% of the existing optimal model. Furthermore, the model demonstrates strong transferability across datasets from different scenic areas.

Suggested Citation

  • Yong Liu & Xiang-jie Fu & Jeffrey Lin Yi Forrest, 2025. "Forecasting tourism demand with pre-holiday attribute," Information Technology & Tourism, Springer, vol. 27(3), pages 613-648, September.
  • Handle: RePEc:spr:infott:v:27:y:2025:i:3:d:10.1007_s40558-025-00315-5
    DOI: 10.1007/s40558-025-00315-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40558-025-00315-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40558-025-00315-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yang & Fan, Yawen & Jiang, Lan & Liu, Xiaohui, 2022. "Search query and tourism forecasting during the pandemic: When and where can digital footprints be helpful as predictors?," Annals of Tourism Research, Elsevier, vol. 93(C).
    2. Gaojun Zhang & Jinfeng Wu & Bing Pan & Junyi Li & Minjie Ma & Muzi Zhang & Jian Wang, 2017. "Improving daily occupancy forecasting accuracy for hotels based on EEMD-ARIMA model," Tourism Economics, , vol. 23(7), pages 1496-1514, November.
    3. Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
    4. Kulshrestha, Anurag & Krishnaswamy, Venkataraghavan & Sharma, Mayank, 2020. "Bayesian BILSTM approach for tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 83(C).
    5. Li, Xin & Pan, Bing & Law, Rob & Huang, Xiankai, 2017. "Forecasting tourism demand with composite search index," Tourism Management, Elsevier, vol. 59(C), pages 57-66.
    6. Vatsa, Puneet, 2021. "Seasonality and cycles in tourism demand—redux," Annals of Tourism Research, Elsevier, vol. 90(C).
    7. Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
    8. Gang Li & Doris Chenguang Wu, 2019. "Introduction to the special issue: Tourism forecasting – New trends and issues," Tourism Economics, , vol. 25(3), pages 305-308, May.
    9. Liang Zhu & Christine Lim & Wenjun Xie & Yuan Wu, 2017. "Analysis of tourism demand serial dependence structure for forecasting," Tourism Economics, , vol. 23(7), pages 1419-1436, November.
    10. Andrea Saayman & Jacques de Klerk, 2019. "Forecasting tourist arrivals using multivariate singular spectrum analysis," Tourism Economics, , vol. 25(3), pages 330-354, May.
    11. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    12. Gunter, Ulrich & Zekan, Bozana, 2021. "Forecasting air passenger numbers with a GVAR model," Annals of Tourism Research, Elsevier, vol. 89(C).
    13. Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
    14. Haiyan Wang & Tao Hu & Huihui Wu, 2023. "Tourism demand with subtle seasonality: Recognition and forecasting," Tourism Economics, , vol. 29(7), pages 1865-1889, November.
    15. Park, Eunhye & Park, Jinah & Hu, Mingming, 2021. "Tourism demand forecasting with online news data mining," Annals of Tourism Research, Elsevier, vol. 90(C).
    16. Rivera, Roberto, 2016. "A dynamic linear model to forecast hotel registrations in Puerto Rico using Google Trends data," Tourism Management, Elsevier, vol. 57(C), pages 12-20.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Shilin & Liu, Yang & Jin, Chun, 2023. "Forecasting daily tourism demand with multiple factors," Annals of Tourism Research, Elsevier, vol. 103(C).
    2. Li, Cheng & Zheng, Weimin & Ge, Peng, 2022. "Tourism demand forecasting with spatiotemporal features," Annals of Tourism Research, Elsevier, vol. 94(C).
    3. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    4. Doris Chenguang Wu & Shiteng Zhong & Richard T R Qiu & Ji Wu, 2022. "Are customer reviews just reviews? Hotel forecasting using sentiment analysis," Tourism Economics, , vol. 28(3), pages 795-816, May.
    5. Guizzardi, Andrea & Pons, Flavio Maria Emanuele & Angelini, Giovanni & Ranieri, Ercolino, 2021. "Big data from dynamic pricing: A smart approach to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1049-1060.
    6. Haodong Sun & Yang Yang & Yanyan Chen & Xiaoming Liu & Jiachen Wang, 2023. "Tourism demand forecasting of multi-attractions with spatiotemporal grid: a convolutional block attention module model," Information Technology & Tourism, Springer, vol. 25(2), pages 205-233, June.
    7. Li, Hengyun & Gao, Huicai & Song, Haiyan, 2023. "Tourism forecasting with granular sentiment analysis," Annals of Tourism Research, Elsevier, vol. 103(C).
    8. Li, Xin & Xu, Yechi & Law, Rob & Wang, Shouyang, 2024. "Enhancing tourism demand forecasting with a transformer-based framework," Annals of Tourism Research, Elsevier, vol. 107(C).
    9. Mingming Hu & Haifeng Yang & Doris Chenguang Wu & Shuai Ma, 2024. "A novel two-stage combination model for tourism demand forecasting," Tourism Economics, , vol. 30(8), pages 1925-1950, December.
    10. Li, Xin & Xu, Yechi & Law, Rob & Wang, Shouyang, 2024. "Enhancing Tourism Demand Forecasting with a Transformer-based Framework," SocArXiv 5ezn3_v1, Center for Open Science.
    11. A Fronzetti Colladon & B Guardabascio & R Innarella, 2021. "Using social network and semantic analysis to analyze online travel forums and forecast tourism demand," Papers 2105.07727, arXiv.org.
    12. Gang Xie & Xin Li & Yatong Qian & Shouyang Wang, 2021. "Forecasting tourism demand with KPCA-based web search indexes," Tourism Economics, , vol. 27(4), pages 721-743, June.
    13. Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
    14. Xu, Jian & Zhang, Wei & Li, Hengyun & Zheng, Xiang (Kevin) & Zhang, Jing, 2024. "User-generated photos in hotel demand forecasting," Annals of Tourism Research, Elsevier, vol. 108(C).
    15. Ming Yin & Feiya Lu & Xingxuan Zhuo & Wangzi Yao & Jialong Liu & Jijiao Jiang, 2024. "Prediction of daily tourism volume based on maximum correlation minimum redundancy feature selection and long short‐term memory network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 344-365, March.
    16. Liu, Yuan-Yuan & Tseng, Fang-Mei & Tseng, Yi-Heng, 2018. "Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 123-134.
    17. Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
    18. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    19. Law, Rob & Li, Gang & Fong, Davis Ka Chio & Han, Xin, 2019. "Tourism demand forecasting: A deep learning approach," Annals of Tourism Research, Elsevier, vol. 75(C), pages 410-423.
    20. Katerina Volchek & Anyu Liu & Haiyan Song & Dimitrios Buhalis, 2019. "Forecasting tourist arrivals at attractions: Search engine empowered methodologies," Tourism Economics, , vol. 25(3), pages 425-447, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infott:v:27:y:2025:i:3:d:10.1007_s40558-025-00315-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.