IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v25y2023i2d10.1007_s10796-022-10331-z.html
   My bibliography  Save this article

Towards Adversarially Superior Malware Detection Models: An Adversary Aware Proactive Approach using Adversarial Attacks and Defenses

Author

Listed:
  • Hemant Rathore

    (BITS Pilani, Department of CS & IS, Goa Campus)

  • Adithya Samavedhi

    (BITS Pilani, Department of CS & IS, Goa Campus)

  • Sanjay K. Sahay

    (BITS Pilani, Department of CS & IS, Goa Campus)

  • Mohit Sewak

    (Security, Compliance Research, Microsoft R & D)

Abstract

The android ecosystem (smartphones, tablets, etc.) has grown manifold in the last decade. However, the exponential surge of android malware is threatening the ecosystem. Literature suggests that android malware can be detected using machine and deep learning classifiers; however, these detection models might be vulnerable to adversarial attacks. This work investigates the adversarial robustness of twenty-four diverse malware detection models developed using two features and twelve learning algorithms across four categories (machine learning, bagging classifiers, boosting classifiers, and neural network). We stepped into the adversary’s shoes and proposed two false-negative evasion attacks, namely GradAA and GreedAA, to expose vulnerabilities in the above detection models. The evasion attack agents transform malware applications into adversarial malware applications by adding minimum noise (maximum five perturbations) while maintaining the modified applications’ structural, syntactic, and behavioral integrity. These adversarial malware applications force misclassifications and are predicted as benign by the detection models. The evasion attacks achieved an average fooling rate of 83.34% (GradAA) and 99.21% (GreedAA) which reduced the average accuracy from 90.35% to 55.22% (GradAA) and 48.29% (GreedAA) in twenty-four detection models. We also proposed two defense strategies, namely Adversarial Retraining and Correlation Distillation Retraining as countermeasures to protect detection models from adversarial attacks. The defense strategies slightly improved the detection accuracy but drastically enhanced the adversarial robustness of detection models. Finally, investigating the robustness of malware detection models against adversarial attacks is an essential step before their real-world deployment and can help in developing adversarially superior detection models.

Suggested Citation

  • Hemant Rathore & Adithya Samavedhi & Sanjay K. Sahay & Mohit Sewak, 2023. "Towards Adversarially Superior Malware Detection Models: An Adversary Aware Proactive Approach using Adversarial Attacks and Defenses," Information Systems Frontiers, Springer, vol. 25(2), pages 567-587, April.
  • Handle: RePEc:spr:infosf:v:25:y:2023:i:2:d:10.1007_s10796-022-10331-z
    DOI: 10.1007/s10796-022-10331-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-022-10331-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-022-10331-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hemant Rathore & Sanjay K. Sahay & Piyush Nikam & Mohit Sewak, 2021. "Robust Android Malware Detection System Against Adversarial Attacks Using Q-Learning," Information Systems Frontiers, Springer, vol. 23(4), pages 867-882, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sagar Samtani & Ziming Zhao & Ram Krishnan, 2023. "Secure Knowledge Management and Cybersecurity in the Era of Artificial Intelligence," Information Systems Frontiers, Springer, vol. 25(2), pages 425-429, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinay Singh & Brijesh Nanavati & Arpan Kumar Kar & Agam Gupta, 2023. "How to Maximize Clicks for Display Advertisement in Digital Marketing? A Reinforcement Learning Approach," Information Systems Frontiers, Springer, vol. 25(4), pages 1621-1638, August.
    2. Sanjay K. Sahay & Nihita Goel & Murtuza Jadliwala & Shambhu Upadhyaya, 2021. "Advances in Secure Knowledge Management in the Artificial Intelligence Era," Information Systems Frontiers, Springer, vol. 23(4), pages 807-810, August.
    3. Mohit Sewak & Sanjay K. Sahay & Hemant Rathore, 2023. "Deep Reinforcement Learning in the Advanced Cybersecurity Threat Detection and Protection," Information Systems Frontiers, Springer, vol. 25(2), pages 589-611, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:25:y:2023:i:2:d:10.1007_s10796-022-10331-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.