IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i7d10.1007_s13198-024-02337-4.html
   My bibliography  Save this article

Interval valued reliability indices assessment of multi-state system using interval $$L_{z}$$ L z -transform

Author

Listed:
  • Vaibhav Bisht

    (G.B. Pant University of Agriculture and Technology)

  • S. B. Singh

    (G.B. Pant University of Agriculture and Technology)

Abstract

This research introduces a new method, called Interval $${L}_{z}$$ L z -transform (ILz), designed to estimate the reliability indices of Multi-State systems (MSS) even when data is uncertain or insufficient. Traditionally, precise values of state probabilities and performance metrics for each component were required, which could be challenging when data is lacking. To address this, the Interval $${L}_{z}$$ L z function is proposed, along with corresponding operators, enabling the calculation of interval-valued reliability indices for MSS. To demonstrate the effectiveness of the proposed method, it is applied to a numerical example of a series–parallel system. In this example, we determine interval-valued reliability indices such as reliability, availability, mean expected performance, and expected profit, considering uncertain values for the performance and failure rates of each multi-state component.

Suggested Citation

  • Vaibhav Bisht & S. B. Singh, 2024. "Interval valued reliability indices assessment of multi-state system using interval $$L_{z}$$ L z -transform," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(7), pages 3293-3305, July.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:7:d:10.1007_s13198-024-02337-4
    DOI: 10.1007/s13198-024-02337-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02337-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02337-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Negi, Seema & Singh, S.B., 2015. "Reliability analysis of non-repairable complex system with weighted subsystems connected in series," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 79-89.
    2. Anatoly Lisnianski & Ilia Frenkel & Lev Khvatskin, 2021. "Modern Dynamic Reliability Analysis for Multi-state Systems," Springer Series in Reliability Engineering, Springer, number 978-3-030-52488-3, April.
    3. Richard E. Barlow & Alexander S. Wu, 1978. "Coherent Systems with Multi-State Components," Mathematics of Operations Research, INFORMS, vol. 3(4), pages 275-281, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jafary, Bentolhoda & Fiondella, Lance, 2016. "A universal generating function-based multi-state system performance model subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 16-27.
    2. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Gebre, Bethel A. & Coit, David W. & Tortorella, Michael, 2006. "New insights on multi-state component criticality and importance," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 894-904.
    3. Che, Haiyang & Zeng, Shengkui & Zhao, Yingzhi & Guo, Jianbin, 2024. "Reliability assessment of multi-state weighted k-out-of-n man-machine systems considering dependent machine deterioration and human fatigue," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    4. Chenxi Liu & Nan Chen & Jianing Yang, 2015. "New method for multi-state system reliability analysis based on linear algebraic representation," Journal of Risk and Reliability, , vol. 229(5), pages 469-482, October.
    5. Dong, Wenjie & Liu, Sifeng & Tao, Liangyan & Cao, Yingsai & Fang, Zhigeng, 2019. "Reliability variation of multi-state components with inertial effect of deteriorating output performances," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 176-185.
    6. Serkan Eryılmaz, 2011. "A new perspective to stress–strength models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 101-115, February.
    7. Tian, Zhigang & Zuo, Ming J., 2006. "Redundancy allocation for multi-state systems using physical programming and genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1049-1056.
    8. Zhou, Taotao & Zhang, Xiaoge & Droguett, Enrique Lopez & Mosleh, Ali, 2023. "A generic physics-informed neural network-based framework for reliability assessment of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    10. Khaled Guerraiche & Latifa Dekhici & Eric Chatelet & Abdelkader Zeblah, 2021. "Multi-Objective Electrical Power System Design Optimization Using a Modified Bat Algorithm," Energies, MDPI, vol. 14(13), pages 1-19, July.
    11. Kołowrocki, K. & Kwiatuszewska-Sarnecka, B., 2008. "Reliability and risk analysis of large systems with ageing components," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1821-1829.
    12. He Yi & Lirong Cui & Narayanaswamy Balakrishnan & Jingyuan Shen, 2022. "Multi-Point and Multi-Interval Bounded-Covering Availability Measures for Aggregated Markovian Repairable Systems," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2427-2453, December.
    13. C Jacksonn & A Mosleh, 2012. "Bayesian inference with overlapping data: methodology for reliability estimation of multi-state on-demand systems," Journal of Risk and Reliability, , vol. 226(3), pages 283-294, June.
    14. Sadiya Naaz & Rashmi Khanna & Riya Rawat & Neha Negi & Mangey Ram & Akshay Kumar & Anuj Kumar, 2024. "Signature reliability analysis of complex consecutive k-out-of-n:W CMO system via UGF and SFA," Journal of Risk and Reliability, , vol. 238(5), pages 1037-1052, October.
    15. Jinlei Qin & Zheng Li, 2019. "Reliability and Sensitivity Analysis Method for a Multistate System with Common Cause Failure," Complexity, Hindawi, vol. 2019, pages 1-8, May.
    16. Ramirez-Marquez, Jose Emmanuel & Coit, David W., 2007. "Multi-state component criticality analysis for reliability improvement in multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1608-1619.
    17. Mohammad Nadjafi & Mohammad Ali Farsi & Hossein Jabbari, 2017. "Reliability analysis of multi-state emergency detection system using simulation approach based on fuzzy failure rate," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 532-541, September.
    18. Soni Bisht & Akshay Kumar & Nupur Goyal & Mangey Ram & Yury Klochkov, 2021. "Analysis of Network Reliability Characteristics and Importance of Components in a Communication Network," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
    19. Tian, Zhigang & Levitin, Gregory & Zuo, Ming J., 2009. "A joint reliability–redundancy optimization approach for multi-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1568-1576.
    20. Sharma Vikas K. & Agarwal Manju & Sen Kanwar, 2010. "Optimal Structure in Heterogeneous Multi-state Series-parallel Reliability Systems," Stochastics and Quality Control, De Gruyter, vol. 25(1), pages 127-150, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:7:d:10.1007_s13198-024-02337-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.