IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i7d10.1007_s13198-024-02337-4.html
   My bibliography  Save this article

Interval valued reliability indices assessment of multi-state system using interval $$L_{z}$$ L z -transform

Author

Listed:
  • Vaibhav Bisht

    (G.B. Pant University of Agriculture and Technology)

  • S. B. Singh

    (G.B. Pant University of Agriculture and Technology)

Abstract

This research introduces a new method, called Interval $${L}_{z}$$ L z -transform (ILz), designed to estimate the reliability indices of Multi-State systems (MSS) even when data is uncertain or insufficient. Traditionally, precise values of state probabilities and performance metrics for each component were required, which could be challenging when data is lacking. To address this, the Interval $${L}_{z}$$ L z function is proposed, along with corresponding operators, enabling the calculation of interval-valued reliability indices for MSS. To demonstrate the effectiveness of the proposed method, it is applied to a numerical example of a series–parallel system. In this example, we determine interval-valued reliability indices such as reliability, availability, mean expected performance, and expected profit, considering uncertain values for the performance and failure rates of each multi-state component.

Suggested Citation

  • Vaibhav Bisht & S. B. Singh, 2024. "Interval valued reliability indices assessment of multi-state system using interval $$L_{z}$$ L z -transform," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(7), pages 3293-3305, July.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:7:d:10.1007_s13198-024-02337-4
    DOI: 10.1007/s13198-024-02337-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02337-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02337-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Richard E. Barlow & Alexander S. Wu, 1978. "Coherent Systems with Multi-State Components," Mathematics of Operations Research, INFORMS, vol. 3(4), pages 275-281, November.
    2. Negi, Seema & Singh, S.B., 2015. "Reliability analysis of non-repairable complex system with weighted subsystems connected in series," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 79-89.
    3. Lisnianski, Anatoly & Frenkel, Ilia & Khvatskin, Lev, 2017. "On sensitivity analysis of aging multi-state system by using LZ-transform," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 99-108.
    4. Anatoly Lisnianski & Ilia Frenkel & Lev Khvatskin, 2021. "Modern Dynamic Reliability Analysis for Multi-state Systems," Springer Series in Reliability Engineering, Springer, number 978-3-030-52488-3, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jafary, Bentolhoda & Fiondella, Lance, 2016. "A universal generating function-based multi-state system performance model subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 16-27.
    2. Rashika Gupta & Manju Agarwal, 2006. "Penalty guided genetic search for redundancy optimization in multi-state series-parallel power system," Journal of Combinatorial Optimization, Springer, vol. 12(3), pages 257-277, November.
    3. Sheng, Yuhong & Ke, Hua, 2020. "Reliability evaluation of uncertain k-out-of-n systems with multiple states," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Yan-Feng Li & Hong-Zhong Huang & Jinhua Mi & Weiwen Peng & Xiaomeng Han, 2022. "Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability," Annals of Operations Research, Springer, vol. 311(1), pages 195-209, April.
    5. Nourelfath, Mustapha & Châtelet, Eric & Nahas, Nabil, 2012. "Joint redundancy and imperfect preventive maintenance optimization for series–parallel multi-state degraded systems," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 51-60.
    6. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Gebre, Bethel A. & Coit, David W. & Tortorella, Michael, 2006. "New insights on multi-state component criticality and importance," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 894-904.
    7. Che, Haiyang & Zeng, Shengkui & Zhao, Yingzhi & Guo, Jianbin, 2024. "Reliability assessment of multi-state weighted k-out-of-n man-machine systems considering dependent machine deterioration and human fatigue," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    8. Chenxi Liu & Nan Chen & Jianing Yang, 2015. "New method for multi-state system reliability analysis based on linear algebraic representation," Journal of Risk and Reliability, , vol. 229(5), pages 469-482, October.
    9. Dong, Wenjie & Liu, Sifeng & Tao, Liangyan & Cao, Yingsai & Fang, Zhigeng, 2019. "Reliability variation of multi-state components with inertial effect of deteriorating output performances," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 176-185.
    10. Serkan Eryılmaz, 2011. "A new perspective to stress–strength models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 101-115, February.
    11. Tian, Zhigang & Zuo, Ming J., 2006. "Redundancy allocation for multi-state systems using physical programming and genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1049-1056.
    12. Belmansour, Ahmed-Tidjani & Nourelfath, Mustapha, 2010. "An aggregation method for performance evaluation of a tandem homogenous production line with machines having multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1193-1201.
    13. Zhou, Taotao & Zhang, Xiaoge & Droguett, Enrique Lopez & Mosleh, Ali, 2023. "A generic physics-informed neural network-based framework for reliability assessment of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    14. Ruiz-Castro, Juan Eloy & Dawabsha, Mohammed & Alonso, Francisco Javier, 2018. "Discrete-time Markovian arrival processes to model multi-state complex systems with loss of units and an indeterminate variable number of repairpersons," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 114-127.
    15. Ohi, Fumio, 2013. "Lattice set theoretic treatment of multi-state coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 86-90.
    16. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    17. Bożena Zwolińska & Jakub Wiercioch, 2022. "Selection of Maintenance Strategies for Machines in a Series-Parallel System," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    18. Khaled Guerraiche & Latifa Dekhici & Eric Chatelet & Abdelkader Zeblah, 2021. "Multi-Objective Electrical Power System Design Optimization Using a Modified Bat Algorithm," Energies, MDPI, vol. 14(13), pages 1-19, July.
    19. Milienos, F.S. & Koutras, M.V., 2008. "A lower bound for the reliability function of multiple failure mode systems," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1639-1648, September.
    20. Kołowrocki, K. & Kwiatuszewska-Sarnecka, B., 2008. "Reliability and risk analysis of large systems with ageing components," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1821-1829.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:7:d:10.1007_s13198-024-02337-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.