IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i1d10.1007_s13198-022-01699-x.html
   My bibliography  Save this article

An ensemble classification and binomial cumulative based PCA for diagnosis of parkinson’s disease and autism spectrum disorder

Author

Listed:
  • A. Syed Haroon

    (Bharathiar University)

  • T. Padma

    (Sona College of Technology)

Abstract

Parkinson's disease is the brain disorder that affects the nervous system. A large number of research works have been carried out on this topic for better diagnosis of Parkinson’s disease. This paper introduces the Score-based Artificial Fish Swarm Algorithm (SAFSA) and the Fuzzy-based Beetle Swarm Optimization Algorithm (FBSOA) for ensemble feature selection for the rapid and accurate detection of psychological disorders related to Parkinson Disease (PD) and Autism Spectrum Disorder (ASD). This method extracts the most key features from the dataset, resulting in a higher rate of disease identification. Initially, the Min–Max Normalization approach is used as the data pre-processing technique. The binomial cumulative distribution function-based Principal Component Analysis (BCDPCA) dimensionality algorithm is used for dimensionality reduction. Next, FBSOA-based feature selection is proposed for finding the best features in the dataset. The fuzzy membership function is used to compute the weight value in the proposed FBSOA method. The FBSOA method uses a unique phenomenon of modifying the weight value of BSOA throughout the optimization process to improve outcomes. Finally, the disease classification is carried out by ensemble learning classification approaches like hybrid classifier of Fuzzy K-Nearest Neighbor (FKNN), Kernel Support Vector Machines (KSVM), Fuzzy Convolution Neural Network (FCNN) and Random Forest (RF). These classifiers are trained using UCI ML data source data, and the results are verified using Leave-One-Person-Out Cross-Validation (LOPOCV). Metrics used to assess the classification algorithm efficiency include accuracy, FAR, F-measure, Matthews Correlation Coefficient, Specificity, Sensitivity. Furthermore, the proposed method is highly stable and reliable, particularly when ensemble classification algorithms, classification accuracy of PD can reach 97% and the classification accuracy of ASD can reach 95%.

Suggested Citation

  • A. Syed Haroon & T. Padma, 2024. "An ensemble classification and binomial cumulative based PCA for diagnosis of parkinson’s disease and autism spectrum disorder," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(1), pages 216-231, January.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:1:d:10.1007_s13198-022-01699-x
    DOI: 10.1007/s13198-022-01699-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-022-01699-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-022-01699-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evan L Ray & Nicholas G Reich, 2018. "Prediction of infectious disease epidemics via weighted density ensembles," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    2. Asmita Mahajan & Nonita Sharma & Silvia Aparicio-Obregon & Hashem Alyami & Abdullah Alharbi & Divya Anand & Manish Sharma & Nitin Goyal, 2022. "A Novel Stacking-Based Deterministic Ensemble Model for Infectious Disease Prediction," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
    3. Michael Morris & Peter Hayes & Ingemar J Cox & Vasileios Lampos, 2023. "Neural network models for influenza forecasting with associated uncertainty using Web search activity trends," PLOS Computational Biology, Public Library of Science, vol. 19(8), pages 1-23, August.
    4. Denis A Shah & Erick D De Wolf & Pierce A Paul & Laurence V Madden, 2021. "Accuracy in the prediction of disease epidemics when ensembling simple but highly correlated models," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-23, March.
    5. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    6. Tim K. Tsang & Qiurui Du & Benjamin J. Cowling & Cécile Viboud, 2024. "An adaptive weight ensemble approach to forecast influenza activity in an irregular seasonality context," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Michal Ben-Nun & Pete Riley & James Turtle & David P Bacon & Steven Riley, 2019. "Forecasting national and regional influenza-like illness for the USA," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-20, May.
    8. Yan Hao & Ting Xu & Hongping Hu & Peng Wang & Yanping Bai, 2020. "Prediction and analysis of Corona Virus Disease 2019," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-15, October.
    9. Velma K Lopez & Estee Y Cramer & Robert Pagano & John M Drake & Eamon B O’Dea & Madeline Adee & Turgay Ayer & Jagpreet Chhatwal & Ozden O Dalgic & Mary A Ladd & Benjamin P Linas & Peter P Mueller & Ja, 2024. "Challenges of COVID-19 Case Forecasting in the US, 2020–2021," PLOS Computational Biology, Public Library of Science, vol. 20(5), pages 1-25, May.
    10. Tong, Zhaomin & An, Rui & Zhang, Ziyi & Liu, Yaolin & Luo, Minghai, 2022. "Exploring non-linear and spatially non-stationary relationships between commuting burden and built environment correlates," Journal of Transport Geography, Elsevier, vol. 104(C).
    11. Prashant Rangarajan & Sandeep K Mody & Madhav Marathe, 2019. "Forecasting dengue and influenza incidences using a sparse representation of Google trends, electronic health records, and time series data," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-24, November.
    12. Ray, Evan L. & Brooks, Logan C. & Bien, Jacob & Biggerstaff, Matthew & Bosse, Nikos I. & Bracher, Johannes & Cramer, Estee Y. & Funk, Sebastian & Gerding, Aaron & Johansson, Michael A. & Rumack, Aaron, 2023. "Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1366-1383.
    13. Sen Pei & Jeffrey Shaman, 2020. "Aggregating forecasts of multiple respiratory pathogens supports more accurate forecasting of influenza-like illness," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-19, October.
    14. Dave Osthus, 2022. "Fast and accurate influenza forecasting in the United States with Inferno," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-22, January.
    15. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2018. "Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-29, June.
    16. Nicholas G Reich & Craig J McGowan & Teresa K Yamana & Abhinav Tushar & Evan L Ray & Dave Osthus & Sasikiran Kandula & Logan C Brooks & Willow Crawford-Crudell & Graham Casey Gibson & Evan Moore & Reb, 2019. "Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-19, November.
    17. repec:plo:pntd00:0008065 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:1:d:10.1007_s13198-022-01699-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.