IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v24y2025i1d10.1007_s10700-025-09439-z.html
   My bibliography  Save this article

Numerical solution of uncertain partial differential equations and its applications

Author

Listed:
  • Lu Yang

    (Xi’an University of Finance and Economics)

  • Yang Liu

    (Beihang University)

Abstract

Uncertain partial differential equations are widely used in practice, such as demography, traffic flows and so on. This paper proves an existence and uniqueness theorem for a class of uncertain partial differential equations. Then the properties of $$\alpha$$ α -path are given based on linear growth, Lipschitz and regular conditions. Since uncertain partial differential equations are difficult to get analytical solutions, this paper presents a formula which combines an uncertain partial differential equation with a class of classical partial differential equations. Based on the formula, an algorithm for calculating the inverse uncertainty distribution of solution of an uncertain partial differential equation is also deduced. Finally, expected value, extreme value, first hitting time, time and spatial integrals of the solution of uncertain partial differential equation are also discussed.

Suggested Citation

  • Lu Yang & Yang Liu, 2025. "Numerical solution of uncertain partial differential equations and its applications," Fuzzy Optimization and Decision Making, Springer, vol. 24(1), pages 69-98, March.
  • Handle: RePEc:spr:fuzodm:v:24:y:2025:i:1:d:10.1007_s10700-025-09439-z
    DOI: 10.1007/s10700-025-09439-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-025-09439-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-025-09439-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:24:y:2025:i:1:d:10.1007_s10700-025-09439-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.