Author
Listed:
- Mohamed El Amine El Goutni
(Mascara University)
- Abedrahmane Remil
(Mascara University)
- Mokhtare Saidi
(Mascara University)
- Mohamed Batouche
(Mascara University)
- Taib Seddik
(Mascara University)
Abstract
This study presents a comprehensive theoretical investigation of the structural, electronic, mechanical, and optical properties of Cs2OsX6 (X = Cl, Br, I) vacancy-ordered double perovskites using density functional theory (DFT) within the WIEN2k computational framework. The structural stability of Cs2OsX6 compounds was systematically evaluated through calculations of total ground state energy, cohesive energy, and formation energy, revealing remarkable stability under ambient conditions and favorable synthesis conditions. Mechanical property assessments, including Cauchy pressure and Poisson's ratio, indicated predominantly ductile behavior, suggesting excellent mechanical durability. Electronic structure calculations, performed using the Wu and Cohen generalized gradient approximation (WC-GGA) and the Tran–Blaha modified Becke–Johnson (TB-mBJ) methods, revealed semiconducting behavior with direct bandgaps of 1.98 eV (Cs2OsCl6), 1.68 eV (Cs2OsX6), and 0.91 eV (Cs2OsI6). Optical property analysis demonstrated strong absorption in the visible spectrum, with Cs2OsI6 exhibiting superior light-harvesting capabilities. Exciton binding energy calculations showed a decreasing trend with increasing halide atomic size, indicating enhanced charge carrier separation and reduced recombination rates. Band edge alignment suggested that Cs2OsCl6 and Cs2OsX6 are suitable for water oxidation, while Cs2OsI6 shows potential for CO2 reduction. These findings provide a robust theoretical foundation for the design and optimization of Cs2OsX6 perovskites in next-generation optoelectronic and photocatalytic devices, advancing sustainable energy technologies. Graphical abstract
Suggested Citation
Mohamed El Amine El Goutni & Abedrahmane Remil & Mokhtare Saidi & Mohamed Batouche & Taib Seddik, 2025.
"Probing Cs2OsX6 (X = Cl, Br, I) double perovskites via DFT: prospects for photocatalytic water splitting and CO2 reduction,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 98(6), pages 1-19, June.
Handle:
RePEc:spr:eurphb:v:98:y:2025:i:6:d:10.1140_epjb_s10051-025-00979-2
DOI: 10.1140/epjb/s10051-025-00979-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:98:y:2025:i:6:d:10.1140_epjb_s10051-025-00979-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.